Minesweeper is a popular spatial-based decision-making game that works with incomplete information. As an exemplary NP-complete problem, it is a major area of research employing various artificial intelligence paradigms. The present work models this game as Constraint Satisfaction Problem (CSP) and Markov Decision Process (MDP). We propose a new method named as dependents from the independent set using deterministic solution search (DSScsp) for the faster enumeration of all solutions of a CSP based Minesweeper game and improve the results by introducing heuristics. Using MDP, we implement machine learning methods on these heuristics. We train the classification model on sparse data with results from CSP formulation. We also propose a new rewarding method for applying a modified deep Q-learning for better accuracy and versatile learning in the Minesweeper game. The overall results have been analyzed for different kinds of Minesweeper games and their accuracies have been recorded. Results from these experiments show that the proposed method of MDP based classification model and deep Q-learning overall is the best methods in terms of accuracy for games with given mine densities.
翻译:排雷者是一个流行的空间决策游戏,它使用不完全的信息发挥作用。它是一个典型的NP完成问题,是一个使用各种人工智能模式的研究领域。目前的工作模式是这个游戏作为约束性满意度问题(CSP)和Markov 决策程序(MDP)的工作模式。我们提出了一个新的方法,称为独立游戏的受抚养人,使用确定性解决方案搜索(DSScsp),更快地列举基于CSP的地雷清除者游戏的所有解决方案,并通过引入超常性学改进结果。我们利用MDP,对这些超常学采用机器学习方法。我们用CSP的编制结果来培训关于稀少数据的分类模式。我们还提出了一个新的有益的方法,用于应用经修改的深度Q学习方法,以提高扫雷者游戏的准确性和多功能性。我们为不同种类的扫雷者游戏及其适应性进行了全面分析。这些实验的结果表明,提议的基于MDP分类模式和深深Q学习方法是使用特定地雷密度游戏的准确性的最佳方法。