A brain-computer interface (BCI) can't be effectively used since electroencephalography (EEG) varies between and within subjects. BCI systems require calibration steps to adjust the model to subject-specific data. It is widely acknowledged that this is a major obstacle to the development of BCIs. To address this issue, previous studies have trained a generalized model by removing the subjects' information. In contrast, in this work, we introduce a style information encoder as an auxiliary task that classifies various source domains and recognizes open-set domains. Open-set recognition method was used as an auxiliary task to learn subject-related style information from the source subjects, while at the same time helping the shared feature extractor map features in an unseen target. This paper compares various OSR methods within an open-set subject recognition (OSSR) framework. As a result of our experiments, we found that the OSSR auxiliary network that encodes domain information improves generalization performance.
翻译:脑计算机界面( BCI) 无法有效使用, 因为各学科之间和各学科内部的电子脑电图( EEG) 不同。 BCI 系统需要校准步骤来调整模型以适应特定主题的数据。 人们普遍认为,这是BCI 发展的一个主要障碍。 为了解决这一问题,以前的研究已经通过删除主题信息来培训了通用模型。 相反,在这项工作中,我们引入了风格化的信息编码器作为辅助任务,对各种源域进行分类,并承认开放域。 使用开放集识别方法作为辅助任务,从源主题中学习与主题相关的样式信息,同时帮助在不可见的目标中绘制共享特征提取图特征特征。 本文比较了开放设定主题识别( OSSR) 框架内的各种 OSR 方法。 作为我们实验的结果,我们发现编码域信息的OSSR辅助网络提高了通用性。