In this paper we consider an ambiguity-averse multi-stage network game between a user and an attacker. The arc costs are assumed to be random variables that satisfy prescribed first-order moment constraints for some subsets of arcs and individual probability constraints for some particular arcs. The user aims at minimizing its cumulative expected loss by traversing between two fixed nodes in the network, while the attacker maximizes the user's objective function by selecting a distribution of arc costs from the family of admissible distributions. In contrast to most of the previous studies in the related literature, both the user and the attacker can dynamically adjust their decisions at each node of the user's path. By observing the user's decisions, the attacker needs to reveal some additional distributional information associated with the arcs emanated from the current user's position. It is shown that the resulting multi-stage distributionally robust shortest path problem admits a linear mixed-integer programming reformulation (MIP). In particular, we distinguish between acyclic and general graphs by introducing different forms of non-anticipativity constraints. Finally, we perform a numerical study, where the quality of adaptive decisions and computational tractability of the proposed MIP reformulation are explored with respect to several classes of synthetic network instances.
翻译:在本文中,我们考虑的是用户和攻击者之间一个模糊的多阶段网络游戏。 弧值成本被假定为随机变量, 满足了某些弧子子数规定的第一阶时间限制和某些特定弧子个别概率限制。 用户的目的是通过在网络中两个固定节点之间穿行来尽量减少其累积的预期损失, 而攻击者则通过从可受理分布式的组合中选择分配弧值成本来最大限度地增加用户的客观功能。 与大多数以前在相关文献中的研究相比, 用户和攻击者都可以在用户路径的每个节点上动态调整其决定。 通过观察用户的决定, 攻击者需要披露与弧相关的一些额外的分配信息, 这些信息来自当前用户的位置。 显示, 由此产生的多阶段分布强力最短的路径问题包含一种线性混合内位配置程序重新制定( MIP ) 。 特别是, 我们通过引入不同形式的非惯性限制来区分周期和一般图表。 最后, 我们通过观察用户路径的每个节点, 攻击者需要通过观察用户的决定, 来显示与电路标的质量, 我们进行若干次的调整性分析, 和再分析。