Generative Adversarial Networks (GANs) are powerful models able to synthesize data samples closely resembling the distribution of real data, yet the diversity of those generated samples is limited due to the so-called mode collapse phenomenon observed in GANs. Especially prone to mode collapse are conditional GANs, which tend to ignore the input noise vector and focus on the conditional information. Recent methods proposed to mitigate this limitation increase the diversity of generated samples, yet they reduce the performance of the models when similarity of samples is required. To address this shortcoming, we propose a novel method to selectively increase the diversity of GAN-generated samples. By adding a simple, yet effective regularization to the training loss function we encourage the generator to discover new data modes for inputs related to diverse outputs while generating consistent samples for the remaining ones. More precisely, we maximise the ratio of distances between generated images and input latent vectors scaling the effect according to the diversity of samples for a given conditional input. We show the superiority of our method in a synthetic benchmark as well as a real-life scenario of simulating data from the Zero Degree Calorimeter of ALICE experiment in LHC, CERN.
翻译:生成的Adversarial Networks(GANs)是能够密切合成数据样品的强大模型,与真实数据分布相仿,但是由于在GANs中观察到的所谓模式崩溃现象,所生成的样本的多样性有限。特别容易发生模式崩溃的是有条件的GANs, 它往往忽视输入的噪声矢量,并注重于有条件的信息。最近提出的减轻这种限制的方法增加了所生成样本的多样性,但在需要相似的样本时,它们减少了模型的性能。为了解决这一缺陷,我们提出了一个有选择地增加GAN生成样本多样性的新方法。通过在培训损失功能中增加简单而有效的规范化,我们鼓励生成者发现与多种产出相关的投入的新数据模式,同时为其余产出生成一致的样本。更准确地说,我们根据所生成的图像和输入的潜在矢量矢量之间的距离比例,根据某一有条件投入的样本的多样性,使效果达到最大化。我们的方法在合成基准中具有优越性,以及从ALICE实验的Zerocoriacriter实验中模拟数据的真实生活情景。