Resource management plays a pivotal role in wireless networks, which, unfortunately, leads to challenging NP-hard problems. Artificial Intelligence (AI), especially deep learning techniques, has recently emerged as a disruptive technology to solve such challenging problems in a real-time manner. However, although promising results have been reported, practical design guidelines and performance guarantees of AI-based approaches are still missing. In this paper, we endeavor to address two fundamental questions: 1) What are the main advantages of AI-based methods compared with classical techniques; and 2) Which neural network should we choose for a given resource management task. For the first question, four advantages are identified and discussed. For the second question, \emph{optimality gap}, i.e., the gap to the optimal performance, is proposed as a measure for selecting model architectures, as well as, for enabling a theoretical comparison between different AI-based approaches. Specifically, for $K$-user interference management problem, we theoretically show that graph neural networks (GNNs) are superior to multi-layer perceptrons (MLPs), and the performance gap between these two methods grows with $\sqrt{K}$.


翻译:在无线网络中,资源管理在无线网络中发挥着关键作用,不幸的是,无线网络导致挑战NP-硬性问题。人工智能(AI),特别是深层次的学习技术,最近作为一种以实时方式解决此类具有挑战性的问题的破坏性技术出现了。然而,尽管报告的结果令人乐观,但基于AI的方法的实际设计指南和绩效保障仍然缺乏。在本文件中,我们努力解决两个基本问题:(1)基于AI的方法与古典技术相比有哪些主要优势;和(2)我们应选择哪个神经网络来承担特定的资源管理任务。关于第一个问题,确定并讨论了四个优势。第二个问题,即对最佳绩效的差距,建议作为选择基于AI的模型结构的一种衡量标准,以及使不同基于AI的方法之间的理论比较成为可能。具体地说,关于$-用户干扰管理问题,我们理论上表明,图形神经网络(GNNNS)优于多层次的 Percepron(MLPs),以及这两种方法之间的性差与美元/srt{K}。

0
下载
关闭预览

相关内容

Explanation:无线网。 Publisher:Springer。 SIT: http://dblp.uni-trier.de/db/journals/winet/
专知会员服务
27+阅读 · 2021年7月11日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
50+阅读 · 2021年1月20日
【文本生成现代方法】Modern Methods for Text Generation
专知会员服务
44+阅读 · 2020年9月11日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
AI/ML/DNN硬件加速设计怎么入门?
StarryHeavensAbove
10+阅读 · 2018年12月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
9+阅读 · 2018年3月10日
Arxiv
3+阅读 · 2016年2月24日
VIP会员
相关VIP内容
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
AI/ML/DNN硬件加速设计怎么入门?
StarryHeavensAbove
10+阅读 · 2018年12月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员