We propose the attraction Indian buffet distribution (AIBD), a distribution for binary feature matrices influenced by pairwise similarity information. Binary feature matrices are used in Bayesian models to uncover latent variables (i.e., features) that explain observed data. The Indian buffet process (IBP) is a popular exchangeable prior distribution for latent feature matrices. In the presence of additional information, however, the exchangeability assumption is not reasonable or desirable. The AIBD can incorporate pairwise similarity information, yet it preserves many properties of the IBP, including the distribution of the total number of features. Thus, much of the interpretation and intuition that one has for the IBP directly carries over to the AIBD. A temperature parameter controls the degree to which the similarity information affects feature-sharing between observations. Unlike other nonexchangeable distributions for feature allocations, the probability mass function of the AIBD has a tractable normalizing constant, making posterior inference on hyperparameters straight-forward using standard MCMC methods. A novel posterior sampling algorithm is proposed for the IBP and the AIBD. We demonstrate the feasibility of the AIBD as a prior distribution in feature allocation models and compare the performance of competing methods in simulations and an application.


翻译:我们提出印度自助布局的吸引力分配(AIBD),这是受相近信息影响的二进制地物矩阵的分布。Bayesian模型使用二进制地物矩阵来发现解释观察到的数据的潜在变量(即特征),印度自助程序(IBP)是以前对潜在地物矩阵的流行性可交换性分布;然而,在有额外信息的情况下,互换性假设是不合理或不可取的。AIBD可以包含双向相似性信息,但它保留了IBP的许多特性,包括所有特征的分布。因此,BBP公司对IBP的许多解释和直觉都直接传到ABBD。一个温度参数控制着类似性信息影响观测之间特征共享的程度。不同于其他非互换性布局配置的分布,AIBD的概率质量函数具有可移动的常态常态,使用标准的MCM方法对超比度计直向前推论。为IBP和AIBD的模拟算法,我们比较了AIBD模型的先前性分布方式。

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
已删除
将门创投
3+阅读 · 2019年4月12日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
6+阅读 · 2021年6月24日
Arxiv
4+阅读 · 2019年1月14日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关资讯
已删除
将门创投
3+阅读 · 2019年4月12日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员