Ground Penetrating Radar (GPR) is an effective non-destructive evaluation (NDE) device for inspecting and surveying subsurface objects (i.e., rebars, utility pipes) in complex environments. However, the current practice for GPR data collection requires a human inspector to move a GPR cart along pre-marked grid lines and record the GPR data in both X and Y directions for post-processing by 3D GPR imaging software. It is time-consuming and tedious work to survey a large area. Furthermore, identifying the subsurface targets depends on the knowledge of an experienced engineer, who has to make manual and subjective interpretation that limits the GPR applications, especially in large-scale scenarios. In addition, the current GPR imaging technology is not intuitive, and not for normal users to understand, and not friendly to visualize. To address the above challenges, this paper presents a novel robotic system to collect GPR data, interpret GPR data, localize the underground utilities, reconstruct and visualize the underground objects' dense point cloud model in a user-friendly manner. This system is composed of three modules: 1) a vision-aided Omni-directional robotic data collection platform, which enables the GPR antenna to scan the target area freely with an arbitrary trajectory while using a visual-inertial-based positioning module tags the GPR measurements with positioning information; 2) a deep neural network (DNN) migration module to interpret the raw GPR B-scan image into a cross-section of object model; 3) a DNN-based 3D reconstruction method, i.e., GPRNet, to generate underground utility model represented as fine 3D point cloud. Comparative studies on synthetic and field GPR raw data with various incompleteness and noise are performed.
翻译:地面穿透雷达(GPR)是用于在复杂环境中检查和勘测地表下物体(即,雷管、公用管道)的有效非破坏性评估(NDE)装置,然而,目前GPR数据收集的做法要求一名人类检查员按照预标记网格线移动GPR马车,用3D GPR成像软件将GPR数据记录在X和Y方向上,以3D GPR成像软件进行后处理,这是耗时和烦琐的工作。此外,确定地下目标取决于一名有经验的工程师的知识,该工程师必须用人工和主观解释限制GPR的应用程序,特别是在大规模假设情况下。此外,目前的GPR成像技术不是直观的,不能让正常用户理解,而且不便于视觉化。为了应对上述挑战,本文提出了一个全新的机器人系统来收集GPR数据,解释基于GPR的GPR数据,使基于地下公用事业的、重建和视觉点的云模型以方便的方式将地下物体的密度点云化。 这个系统由三个模块组成:1 GPR 将G-ral的图解路路路路标用于G的G 方向定位模型,同时将G- salalal IM路标的模型用于G-d 方向的G-d 数据采集的模型到G-dal 方向的模型到G2,将G-dal-dal-dal 方向的模型到G-d 方向的模型将G-dalmailmader 方向的模型进行一个G-d