The Quantum Approximate Optimization Algorithm (QAOA) is a general purpose quantum algorithm designed for combinatorial optimization. We analyze its expected performance and prove concentration properties at any constant level (number of layers) on ensembles of random combinatorial optimization problems in the infinite size limit. These ensembles include mixed spin models and Max-$q$-XORSAT on sparse random hypergraphs. To enable our analysis, we prove a generalization of the multinomial theorem which is a technical result of independent interest. We then show that the performance of the QAOA at constant levels for the pure $q$-spin model matches asymptotically the ones for Max-$q$-XORSAT on random sparse Erd\H{o}s-R\'{e}nyi hypergraphs and every large-girth regular hypergraph. Through this correspondence, we establish that the average-case value produced by the QAOA at constant levels is bounded away from optimality for pure $q$-spin models when $q\ge 4$ is even. This limitation gives a hardness of approximation result for quantum algorithms in a new regime where the whole graph is seen.
翻译:QAOA 是用于组合优化的通用量子算法 。 我们分析其预期性能, 并证明在无限大小限制范围内随机组合优化问题的组合中, 任何恒定水平( 层数) 的浓度性能。 这些组合包括混合旋转模型和稀有随机高光谱上的 Max- q$- XORSAT 。 为了进行我们的分析, 我们证明多名定理是独立兴趣的技术结果。 然后我们显示, 纯 $- spin 模型在固定水平上的 QAAA 的性能与随机稀薄的 Erd\ H{ }s- R\\\ { e} nyi 高光谱和每种大型常规高光谱上的 Max- QOA 高光谱中的 Max- $- QOA 匹配。 我们通过此通信, 确定 QAAA 常态水平上的平均量值与纯 $- spin 模型的性能度水平相隔开来, 将纯 $- scarnalgin pressal pral press pressal pressalislation 。 当看到美元 4 Qalmagal 时, propal pral pral pralgalgalgal pressalgalmlation 。