A multi-modal framework to generated user intention distributions when operating a mobile vehicle is proposed in this work. The model learns from past observed trajectories and leverages traversability information derived from the visual surroundings to produce a set of future trajectories, suitable to be directly embedded into a perception-action shared control strategy on a mobile agent, or as a safety layer to supervise the prudent operation of the vehicle. We base our solution on a conditional Generative Adversarial Network with Long-Short Term Memory cells to capture trajectory distributions conditioned on past trajectories, further fused with traversability probabilities derived from visual segmentation with a Convolutional Neural Network. The proposed data-driven framework results in a significant reduction in error of the predicted trajectories (versus the ground truth) from comparable strategies in the literature (e.g. Social-GAN) that fail to account for information other than the agent's past history. Experiments were conducted on a dataset collected with a custom wheelchair model built onto the open-source urban driving simulator CARLA, proving also that the proposed framework can be used with a small, un-annotated dataset.
翻译:在这项工作中,提议了一个多模式框架,用于在操作移动车辆时生成用户意向分布。模型从以往观察到的轨迹中学习,并利用从视觉周围获得的可移动性信息,产生一系列未来轨迹,适合直接嵌入移动剂的感知-行动共同控制战略中,或作为监督车辆谨慎操作的安全层。我们用长期短程内存单元格的有条件的基因反向网络解决问题,以捕捉以过去轨迹为条件的轨迹分布,进一步结合了从视觉分解中得出的可移动性概率信息,从而产生一套未来轨迹,适合直接嵌入移动剂的感知-行动共同控制战略中,或作为监督车辆谨慎运行的安全层。我们用长期短程内存单元格来捕获的有条件的基因反向网络来获取解决方案,以以往轨迹分布为条件,进一步结合了与动态神经网络的视觉分割所产生的可移动性概率。拟议的数据驱动力框架(例如社会-GAN)大大缩小了预测轨迹(地面真象)与文献(例如社会-GAN)的可忽略过去历史之外的信息。实验是在与资料库中,还用一个拟议框架来证明可以使用的数据。