Out-of-distribution (OOD) detection aims to identify OOD data based on representations extracted from well-trained deep models. However, existing methods largely ignore the reprogramming property of deep models and thus may not fully unleash their intrinsic strength: without modifying parameters of a well-trained deep model, we can reprogram this model for a new purpose via data-level manipulation (e.g., adding a specific feature perturbation to the data). This property motivates us to reprogram a classification model to excel at OOD detection (a new task), and thus we propose a general methodology named watermarking in this paper. Specifically, we learn a unified pattern that is superimposed onto features of original data, and the model's detection capability is largely boosted after watermarking. Extensive experiments verify the effectiveness of watermarking, demonstrating the significance of the reprogramming property of deep models in OOD detection.
翻译:分配外探测(OOD)的目的是根据从经过良好训练的深层模型中提取的表征确定OOD数据,但是,现有方法在很大程度上忽视了深层模型的重新编程特性,因此可能无法充分释放其内在力量:如果不修改经过良好训练的深层模型的参数,我们可以通过数据级操作(例如,在数据中增加一个特定特征扰动)为新的目的重新编程这一模型。这一属性促使我们重新编程一个分类模型,以优于OOOD探测(一项新任务),因此,我们提议在本文中采用一个名为水标记的一般方法。具体地说,我们学到了一种在原始数据特征上叠加的统一模式的探测能力,在水标记后,该模型的探测能力在很大程度上得到了提高。广泛实验验证了水标记的有效性,显示了OOD探测深模型重新编程特性的重要性。