Out-of-distribution generalization (OODG) is a longstanding challenge for neural networks. This challenge is quite apparent in tasks with well-defined variables and rules, where explicit use of the rules could solve problems independently of the particular values of the variables, but networks tend to be tied to the range of values sampled in their training data. Large transformer-based language models have pushed the boundaries on how well neural networks can solve previously unseen problems, but their complexity and lack of clarity about the relevant content in their training data obfuscates how they achieve such robustness. As a step toward understanding how transformer-based systems generalize, we explore the question of OODG in small scale transformers trained with examples from a known distribution. Using a reasoning task based on the puzzle Sudoku, we show that OODG can occur on a complex problem if the training set includes examples sampled from the whole distribution of simpler component tasks. Successful generalization depends on carefully managing positional alignment when absolute position encoding is used, but we find that suppressing sensitivity to absolute positions overcomes this limitation. Taken together our results represent a small step toward understanding and promoting systematic generalization in transformers.


翻译:对神经网络来说,传播通用性(OODG)是一个长期的挑战。这一挑战在定义明确的变量和规则的任务中非常明显,明确使用规则可以解决与变量特定值无关的问题,但网络往往与培训数据中抽样的数值范围相关。大型变压器语言模型拉动了神经网络能如何很好地解决先前不为人知的问题的界限,但其复杂性及其培训数据中相关内容的不明确性模糊了它们是如何实现这种稳健性的。作为了解基于变压器的系统如何普遍化的一个步骤,我们探索了小规模变压器中ODG的问题,以已知分布的范例来培训。我们利用基于谜题的推理任务表明,如果成套培训包括从整个更简单的组件任务分布中抽样的范例,ODG可以出现复杂的问题。成功化取决于在使用绝对位置编码时谨慎地管理位置上的调整,但我们发现抑制对绝对位置的敏感度克服了这一限制。我们的结果加在一起代表了在理解和促进变压器系统化过程中的一小步。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
31+阅读 · 2022年12月20日
Arxiv
38+阅读 · 2021年8月31日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员