Chord diagrams, under the name of Gauss diagrams, are used in low-dimensional topology as an important tool for studying curves or knots. Those Gauss diagrams that correspond to curves or knots are called realizable. The theme of our paper is the fact that realizability of a Gauss diagram can be expressed via its circle graph. Accordingly, one can define and study realizable circle graphs (with realizability of a circle graph understood as realizability of any one of chord diagrams corresponding to the graph). Several studies contain theorems purporting to prove the fact. We check several of these descriptions experimentally and find counterexamples to the descriptions of realizable Gauss diagrams in some of these publications. We formulate new descriptions of realizable circle graphs and present an elegant algorithm for checking if a circle graph is realizable. We enumerate realizable circle graphs for small sizes and comment on these numbers. Then we concentrate on one type of curves, called meanders, and study the circle graphs of their Gauss diagrams.
翻译:以 Gaus 图表的名称命名的弦图,用于低维表层学,作为研究曲线或结节的一个重要工具。这些与曲线或结节相对应的高斯图被称为可实现。我们的论文的主题是,高斯图的真实性可以通过圆形图表示。因此,我们可以定义和研究可实现的圆形图(以圆形图的可真实性来理解一个圆形图,该图被理解为与图表相对应的任何一条和弦图的可真实性)。一些研究含有旨在证明事实的理论。我们实验性地检查了其中的一些描述,并在其中一些出版物中找到可实现的高斯图的描述的对应示例。我们对可实现的圆形图进行新的描述,并提出一种优雅的算法,用于检查圆形图是否可实现。我们为小的圆形图绘制了可实现的圆形图,并对这些数字作出评论。然后我们集中研究一种类型的曲线,称为指针,并研究其圆形图的圆形图。