The correct choice of interface conditions and proper model parameters for coupled free-flow and porous-medium systems is vital for physically consistent modeling and accurate numerical simulations of applications. We apply the Stokes equations to describe the free flow and consider different models for both the porous-medium compartment and the coupling at the fluid--porous interface. These models are the REV-scale porous-medium model in the form of Darcy's law with classical or generalized interface conditions and the pore-network model with its related coupling approach. We study the coupled flow problems' behaviors considering a benchmark case, where a pore-scale resolved model provides the reference solution, and quantify the uncertainties in the models' parameters and the reference data. For this purpose, we apply a statistical framework that incorporates a probabilistic modeling technique using a fully Bayesian approach. A Bayesian perspective on a validation task yields an optimal bias-variance trade-off against the reference data. It provides an integrative metric for model validation that incorporates parameter and conceptual uncertainty. Additionally, a model reduction technique, namely Bayesian Sparse Polynomial Chaos Expansion, is employed to accelerate the calibration and validation processes for the computationally demanding free-flow and porous-medium models using different coupling strategies. We perform uncertainty-aware validation, demonstrate each model's predictive capabilities, and make a probabilistic model comparison using a Bayesian validation metric.
翻译:正确选择界面条件和适当模型参数,以配合自由流通和多孔-中型系统,对于物理上一致的模型和精确的数字模拟应用程序至关重要。我们应用斯托克斯方程式来描述自由流通,并考虑多孔-中间隔和流体-多孔界面连接的不同模型。这些模型是以达西法律为形式的REV规模的多孔-中型模型,具有传统或普遍接口条件,以及孔径-网络模型及其相关组合方法。我们研究混合流动问题的行为,以考虑基准案例,在这个案例中,孔径-大规模解决模型提供参考解决方案,量化模型参数和参考数据中的不确定性。为此,我们应用一个统计框架,采用全巴伊西亚方法,纳入概率性模型,根据参考数据进行最佳的偏差-偏差-偏差-偏差-偏差-网络模型模型。我们采用一个模型的减少技术,即Bayesian Spreparyal Commission 模型提供参考数据。我们利用每个要求的灵活度-递校准-模型进行快速的校准和测试,我们使用一个要求的校准-递校准-递校准-模拟的校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准/校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-能力。