The correct choice of interface conditions and proper model parameters for coupled free-flow and porous-medium systems is vital for physically consistent modeling and accurate numerical simulations of applications. We apply the Stokes equations to describe the free flow and consider different models for both the porous-medium compartment and the coupling at the fluid--porous interface. These models are the REV-scale porous-medium model in the form of Darcy's law with classical or generalized interface conditions and the pore-network model with its related coupling approach. We study the coupled flow problems' behaviors considering a benchmark case, where a pore-scale resolved model provides the reference solution, and quantify the uncertainties in the models' parameters and the reference data. For this purpose, we apply a statistical framework that incorporates a probabilistic modeling technique using a fully Bayesian approach. A Bayesian perspective on a validation task yields an optimal bias-variance trade-off against the reference data. It provides an integrative metric for model validation that incorporates parameter and conceptual uncertainty. Additionally, a model reduction technique, namely Bayesian Sparse Polynomial Chaos Expansion, is employed to accelerate the calibration and validation processes for the computationally demanding free-flow and porous-medium models using different coupling strategies. We perform uncertainty-aware validation, demonstrate each model's predictive capabilities, and make a probabilistic model comparison using a Bayesian validation metric.


翻译:正确选择界面条件和适当模型参数,以配合自由流通和多孔-中型系统,对于物理上一致的模型和精确的数字模拟应用程序至关重要。我们应用斯托克斯方程式来描述自由流通,并考虑多孔-中间隔和流体-多孔界面连接的不同模型。这些模型是以达西法律为形式的REV规模的多孔-中型模型,具有传统或普遍接口条件,以及孔径-网络模型及其相关组合方法。我们研究混合流动问题的行为,以考虑基准案例,在这个案例中,孔径-大规模解决模型提供参考解决方案,量化模型参数和参考数据中的不确定性。为此,我们应用一个统计框架,采用全巴伊西亚方法,纳入概率性模型,根据参考数据进行最佳的偏差-偏差-偏差-偏差-偏差-网络模型模型。我们采用一个模型的减少技术,即Bayesian Spreparyal Commission 模型提供参考数据。我们利用每个要求的灵活度-递校准-模型进行快速的校准和测试,我们使用一个要求的校准-递校准-递校准-模拟的校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准/校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-校准-能力。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
44+阅读 · 2020年10月31日
专知会员服务
60+阅读 · 2020年3月19日
专知会员服务
109+阅读 · 2020年3月12日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月14日
Arxiv
10+阅读 · 2021年2月18日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员