There is growing concern that male reproduction is affected by environmental chemicals. One way to determine the adverse effect of environmental pollutants is to use wild animals as monitors and evaluate testicular toxicity using histopathology. Automated methods are necessary tools in the quantitative assessment of histopathology to overcome the subjectivity of manual evaluation and accelerate the process. We propose an automated method to process histology images of testicular tissue. Segmenting the epithelial layer of the seminiferous tubule is a prerequisite for developing automated methods to detect abnormalities in tissue. We suggest an encoder-decoder fully connected convolutional neural network (F-CNN) model to segment the epithelial layer of the seminiferous tubules in histological images. Using ResNet-34 modules in the encoder adds a shortcut mechanism to avoid the gradient vanishing and accelerate the network convergence. The squeeze & excitation (SE) attention block is integrated into the encoding module improving the segmentation and localization of epithelium. We applied the proposed method for the 2-class problem where the epithelial layer of the tubule is the target class. The f-score and IoU of the proposed method are 0.85 and 0.92. Although the proposed method is trained on a limited training set, it performs well on an independent dataset and outperforms other state-of-the-art methods. The pretrained ResNet-34 in the encoder and attention block suggested in the decoder result in better segmentation and generalization. The proposed method can be applied to testicular tissue images from any mammalian species and can be used as the first part of a fully automated testicular tissue processing pipeline. The dataset and codes are publicly available on GitHub.


翻译:人们日益担心男性生殖受到环境化学品的影响。确定环境污染物不利影响的一种方法,是使用野生动物作为监测器,并使用组织病理学来评估睾丸毒性。自动化方法对于对组织病理学进行定量评估是必要的工具,以克服人工评估的主观性,并加速这一过程。我们提议了一种自动化方法来处理睾丸组织的生物图象。将半细胞管的上皮层分解是开发自动方法以检测组织异常的一个先决条件。我们建议使用一个充分连接的神经神经网络(F-CNN)模型来分解组织图象图象图象中半细胞病理病理病理学层。我们建议的方法是将骨质细胞细胞分解和局部病理学分解器(F-CNN)用于骨质图象学图象学的分解层。拟议的方法是:在组织病理学上应用的表层和血液细胞组织图解法中,拟议的方法是完全使用。在组织病理学中采用一个测试方法的精度。在常规方法中,拟议的方法是完全使用一个测试方法。在常规方法中,在常规方法中采用一个部分。在试验中采用一个测试方法中采用一个部分。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月12日
VIP会员
相关VIP内容
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员