There is growing concern that male reproduction is affected by environmental chemicals. One way to determine the adverse effect of environmental pollutants is to use wild animals as monitors and evaluate testicular toxicity using histopathology. Automated methods are necessary tools in the quantitative assessment of histopathology to overcome the subjectivity of manual evaluation and accelerate the process. We propose an automated method to process histology images of testicular tissue. Segmenting the epithelial layer of the seminiferous tubule is a prerequisite for developing automated methods to detect abnormalities in tissue. We suggest an encoder-decoder fully connected convolutional neural network (F-CNN) model to segment the epithelial layer of the seminiferous tubules in histological images. Using ResNet-34 modules in the encoder adds a shortcut mechanism to avoid the gradient vanishing and accelerate the network convergence. The squeeze & excitation (SE) attention block is integrated into the encoding module improving the segmentation and localization of epithelium. We applied the proposed method for the 2-class problem where the epithelial layer of the tubule is the target class. The f-score and IoU of the proposed method are 0.85 and 0.92. Although the proposed method is trained on a limited training set, it performs well on an independent dataset and outperforms other state-of-the-art methods. The pretrained ResNet-34 in the encoder and attention block suggested in the decoder result in better segmentation and generalization. The proposed method can be applied to testicular tissue images from any mammalian species and can be used as the first part of a fully automated testicular tissue processing pipeline. The dataset and codes are publicly available on GitHub.
翻译:人们日益担心男性生殖受到环境化学品的影响。确定环境污染物不利影响的一种方法,是使用野生动物作为监测器,并使用组织病理学来评估睾丸毒性。自动化方法对于对组织病理学进行定量评估是必要的工具,以克服人工评估的主观性,并加速这一过程。我们提议了一种自动化方法来处理睾丸组织的生物图象。将半细胞管的上皮层分解是开发自动方法以检测组织异常的一个先决条件。我们建议使用一个充分连接的神经神经网络(F-CNN)模型来分解组织图象图象图象中半细胞病理病理病理学层。我们建议的方法是将骨质细胞细胞分解和局部病理学分解器(F-CNN)用于骨质图象学图象学的分解层。拟议的方法是:在组织病理学上应用的表层和血液细胞组织图解法中,拟议的方法是完全使用。在组织病理学中采用一个测试方法的精度。在常规方法中,拟议的方法是完全使用一个测试方法。在常规方法中,在常规方法中采用一个部分。在试验中采用一个测试方法中采用一个部分。