We introduce PHFL, a probabilistic extension of higher-order fixpoint logic, which can also be regarded as a higher-order extension of probabilistic temporal logics such as PCTL and the $\mu^p$-calculus. We show that PHFL is strictly more expressive than the $\mu^p$-calculus, and that the PHFL model-checking problem for finite Markov chains is undecidable even for the $\mu$-only, order-1 fragment of PHFL. Furthermore the full PHFL is far more expressive: we give a translation from Lubarsky's $\mu$-arithmetic to PHFL, which implies that PHFL model checking is $\Pi^1_1$-hard and $\Sigma^1_1$-hard. As a positive result, we characterize a decidable fragment of the PHFL model-checking problems using a novel type system.
翻译:我们引入了PHFL, 这是高阶固定点逻辑的概率扩展, 也可以被视为PCTL和美元计算仪等概率时间逻辑的更高顺序扩展。 我们显示, PHFL 严格来说比 $\ mu ⁇ p$- calculs 更能表达性, 有限马可夫链的 PHFL 模式检查问题即使只用$\ mu$, 命令-1 的碎片也不可避免。 此外, 完整PHFL 更能说明问题: 我们将Lubarsky 的$\ mu$- arithetic 转换为 PHFL, 这意味着 PHFL 模式检查是$\ pí1_ 1美元硬和 $\ Sigma_1美元硬。 作为肯定的结果, 我们用新型系统将PHFL 模式检查问题的一个可分解的碎片定性为零碎块。