We introduce an axiomatic approach to entropies and relative entropies that relies only on minimal information-theoretic axioms, namely monotonicity under mixing and data-processing as well as additivity for product distributions. We find that these axioms induce sufficient structure to establish continuity in the interior of the probability simplex and meaningful upper and lower bounds, e.g., we find that every relative entropy must lie between the R\'enyi divergences of order $0$ and $\infty$. We further show simple conditions for positive definiteness of such relative entropies and a characterisation in term of a variant of relative trumping. Our main result is a one-to-one correspondence between entropies and relative entropies.
翻译:我们对异种和相对异种采用不言自明的方法,仅依靠最低限度的信息-理论轴轴,即混合和数据处理中的单一性以及产品分销的相加性。我们发现,这些异族轴促使足够的结构在内部建立概率简单x的连续性以及有意义的上下界,例如,我们发现,每个相对的酶必须处于R\'enyi 顺序0美元和 $\infty 之间的差值之间。我们进一步展示了这种相对异种的确定性以及相对覆被的特性的简单条件。我们的主要结果是,各异种和相对异种之间的一对一对应。