Graph association rule mining is a data mining technique used for discovering regularities in graph data. In this study, we propose a novel concept, {\it path association rule mining}, to discover the correlations of path patterns that frequently appear in a given graph. Reachability path patterns (i.e., existence of paths from a vertex to another vertex) are applied in our concept to discover diverse regularities. We show that the problem is NP-hard, and we develop an efficient algorithm in which the anti-monotonic property is used on path patterns. Subsequently, we develop approximation and parallelization techniques to efficiently and scalably discover rules. We use real-life graphs to experimentally verify the effective
翻译:图形关联规则采矿是一种数据开采技术,用于在图形数据中发现规律性。在本研究中,我们提出了一个新概念,即 ~it 路径关联规则采矿},以发现某个图表中经常出现的路径模式的关联性。在我们的概念中应用了可达性路径模式(即从顶点到另一个顶点的路径的存在)来发现不同的规律性。我们表明问题在于NP硬性,我们开发了一种高效算法,在路径模式中使用反调属性。随后,我们开发了近似和平行技术,以便高效和可移动地发现规则。我们用真实生命图来实验性地验证有效性。