Video snapshot compressive imaging (SCI) captures a sequence of video frames in a single shot using a 2D detector. The underlying principle is that during one exposure time, different masks are imposed on the high-speed scene to form a compressed measurement. With the knowledge of masks, optimization algorithms or deep learning methods are employed to reconstruct the desired high-speed video frames from this snapshot measurement. Unfortunately, though these methods can achieve decent results, the long running time of optimization algorithms or huge training memory occupation of deep networks still preclude them in practical applications. In this paper, we develop a memory-efficient network for large-scale video SCI based on multi-group reversible 3D convolutional neural networks. In addition to the basic model for the grayscale SCI system, we take one step further to combine demosaicing and SCI reconstruction to directly recover color video from Bayer measurements. Extensive results on both simulation and real data captured by SCI cameras demonstrate that our proposed model outperforms previous state-of-the-art with less memory and thus can be used in large-scale problems. The code is at https://github.com/BoChenGroup/RevSCI-net.


翻译:视频缩压成像(SCI) 利用 2D 探测器在一次性镜头中捕捉到一组视频框架序列。 基本原则是,在一次接触期间,对高速场景施以不同的面罩以形成压缩测量。 有了面具知识, 优化算法或深层学习方法, 利用这种快照测量重建所希望的高速视频框架。 不幸的是, 虽然这些方法可以取得体面的结果, 长期的优化算法运行时间或深层网络的大规模培训记忆性占用在实际应用中仍然无法阻止它们。 在本文中, 我们开发了一个大型视频 SCI 的记忆高效网络, 其基础是多组可逆的 3D 共生神经网络。 除了灰度 SCI 系统的基本模型外, 我们还进一步将演示和 SCI 重建结合起来, 直接从 Bayer 测量中恢复彩色视频。 SCI 模拟和摄取的真实数据的广泛结果表明, 我们提议的模型比先前的艺术状态更差,记忆性更小,因此可以用于大规模问题。 代码在 http://giusubs/ Revcom groom.

0
下载
关闭预览

相关内容

压缩感知是近年来极为热门的研究前沿,在若干应用领域中都引起瞩目。 compressive sensing(CS) 又称 compressived sensing ,compressived sample,大意是在采集信号的时候(模拟到数字),同时完成对信号压缩之意。 与稀疏表示不同,压缩感知关注的是如何利用信号本身所具有的稀疏性,从部分观测样本中恢复原信号。
深度强化学习策略梯度教程,53页ppt
专知会员服务
179+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机视觉领域顶会CVPR 2018 接受论文列表
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
16+阅读 · 2021年3月2日
Arxiv
35+阅读 · 2021年1月27日
Video-to-Video Synthesis
Arxiv
9+阅读 · 2018年8月20日
VIP会员
相关资讯
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机视觉领域顶会CVPR 2018 接受论文列表
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员