Detecting symmetry from data is a fundamental problem in signal analysis, providing insight into underlying structure and constraints. When data emerge as trajectories of dynamical systems, symmetries encode structural properties of the dynamics that enable model reduction, principled comparison across conditions, and detection of regime changes. While recent optimal transport methods provide practical tools for data-driven symmetry detection in this setting, they rely on deterministic thresholds and lack uncertainty quantification, limiting robustness to noise and ability to resolve hierarchical symmetry structures. We present a Bayesian framework that formulates symmetry detection as probabilistic model selection over a lattice of candidate subgroups, using a Gibbs posterior constructed from Wasserstein distances between observed data and group-transformed copies. We establish three theoretical guarantees: $(i)$ a Bayesian Occam's razor favoring minimal symmetry consistent with data, $(ii)$ conjugation equivariance ensuring frame-independence, and $(iii)$ stability bounds under perturbations for robustness to noise. Posterior inference is performed via Metropolis-Hastings sampling and numerical experiments on equivariant dynamical systems and synthetic point clouds demonstrate accurate symmetry recovery under high noise and small sample sizes. An application to human gait dynamics reveals symmetry changes induced by mechanical constraints, demonstrating the framework's utility for statistical inference in biomechanical and dynamical systems.
翻译:从数据中检测对称性是信号分析中的一个基本问题,可为理解底层结构和约束提供洞见。当数据以动力系统轨迹的形式出现时,对称性编码了动力学的结构特性,从而能够实现模型降维、跨条件的原理性比较以及状态变化的检测。尽管最近的最优传输方法为此类数据驱动的对称性检测提供了实用工具,但它们依赖于确定性阈值且缺乏不确定性量化,限制了其对噪声的鲁棒性以及解析层次化对称结构的能力。我们提出了一个贝叶斯框架,该框架将对称性检测表述为在候选子群格上的概率模型选择,其使用基于观测数据与群变换副本之间Wasserstein距离构建的吉布斯后验。我们建立了三个理论保证:$(i)$ 倾向于与数据一致的最小对称性的贝叶斯奥卡姆剃刀原则,$(ii)$ 确保框架独立性的共轭等变性,以及$(iii)$ 扰动下的稳定性界限,以保证对噪声的鲁棒性。后验推断通过Metropolis-Hastings采样进行,在等变动力系统和合成点云上的数值实验表明,该方法在高噪声和小样本量下能实现准确的对称性恢复。在人类步态动力学中的应用揭示了由机械约束引起的对称性变化,证明了该框架在生物力学和动力系统统计推断中的实用性。