Computational efficient evaluation of penalized estimators of multivariate exponential family distributions is sought. These distributions encompass among others Markov random fields with variates of mixed type (e.g. binary and continuous) as special case of interest. The model parameter is estimated by maximization of the pseudo-likelihood augmented with a convex penalty. The estimator is shown to be consistent. With a world of multi-core computers in mind, a computationally efficient parallel Newton-Raphson algorithm is presented for numerical evaluation of the estimator alongside conditions for its convergence. Parallelization comprises the division of the parameter vector into subvectors that are estimated simultaneously and subsequently aggregated to form an estimate of the original parameter. This approach may also enable efficient numerical evaluation of other high-dimensional estimators. The performance of the proposed estimator and algorithm are evaluated and compared in a simulation study. Finally, the paper concludes with an illustration of the presented methodology in the reconstruction of the conditional independence network from data of an integrative omics study.


翻译:对多变量指数家庭分布的受罚估计值进行高效的计算性评估,这些分布包括作为特殊感兴趣的特例的混合类型(例如二进制和连续)的Markov随机字段,其中含有不同变量(例如二进制和连续型),模型参数通过最大限度地增加假象加封状法来估计。估计值显示是一致的。考虑到一个多核心计算机的世界,为了对估计值进行数字评估,提出了一种具有计算效率的平行牛顿-拉夫森算法,同时提供其趋同的条件。平行化包括将参数矢量分解为子变量,同时估算并随后汇总,以形成原始参数的估计数。这个方法还有助于对其他高维估计值者进行有效的数字评估。在模拟研究中评估和比较了拟议的估计值和算法的性能。最后,文件最后用一个说明,说明在从综合生态研究的数据中重建有条件的独立网络时所提出的方法。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
人工智能领域顶会IJCAI 2018 接受论文列表
专知
5+阅读 · 2018年5月16日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年2月26日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
人工智能领域顶会IJCAI 2018 接受论文列表
专知
5+阅读 · 2018年5月16日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员