Multivariate Gaussian regression is embedded into a general distributional regression framework using flexible additive predictors determining all distributional parameters. While this is relatively straightforward for the means of the multivariate dependent variable, it is more challenging for the full covariance matrix {\Sigma} due to two main difficulties: (i) ensuring positive-definiteness of {\Sigma} and (ii) regularizing the high model complexity. Both challenges are addressed by adopting a parameterization of {\Sigma} based on its basic or modified Cholesky decomposition, respectively. Unlike the decomposition into variances and a correlation matrix, the Cholesky decomposition guarantees positive-definiteness for any predictor values regardless of the distributional dimension. Thus, this enables linking all distributional parameters to flexible predictors without any joint constraints that would substantially complicate other parameterizations. Moreover, this approach enables regularization of the flexible additive predictors through penalized maximum likelihood or Bayesian estimation as for other distributional regression models. Finally, the Cholesky decomposition allows to reduce the number of parameters when the components of the multivariate dependent variable have a natural order (typically time) and a maximum lag can be assumed for the dependencies among the components.


翻译:多种变量回归嵌入一个通用分布回归框架,使用灵活的添加性预测器确定所有分布参数。对于多变量依赖变量变量的手段来说,这相对简单,但对于完整的共变矩阵矩阵 {Sigma} 更具挑战性,因为两个主要困难:(一) 确保正-确定 {Sigma} 和(二) 使高模型复杂性正规化。这两个挑战都通过基于基本或修改后的 CHolesky 分解的参数化来解决。与分解成差异和关联矩阵不同,Choolesky分解保证任何预测值的正-确定性,而不论分布层面如何。因此,这能够将所有分配参数与灵活的预测值联系起来,而没有任何联合制约,使其他参数的参数严重复杂化。此外,这一方法使得灵活的添加预测器能够通过最可能受抑制的可能性或巴伊斯估计与其他分布回归模型一样,实现正规化。最后,当多变量依赖性变量各组成部分具有假设的自然顺序时,Cho洛斯基分使参数数量减少。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
专知会员服务
162+阅读 · 2020年1月16日
一文读懂线性回归、岭回归和Lasso回归
CSDN
34+阅读 · 2019年10月13日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
逻辑回归(Logistic Regression) 模型简介
全球人工智能
5+阅读 · 2017年11月1日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年4月19日
VIP会员
相关资讯
一文读懂线性回归、岭回归和Lasso回归
CSDN
34+阅读 · 2019年10月13日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
逻辑回归(Logistic Regression) 模型简介
全球人工智能
5+阅读 · 2017年11月1日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员