This paper discusses the problem of estimation and inference on time-varying treatments. We propose a method for inference on treatment histories, by introducing a \textit{dynamic} covariate balancing method. Our approach allows for (i) treatments to propagate arbitrarily over time; (ii) non-stationarity and heterogeneity of treatment effects; (iii) high-dimensional covariates, and (iv) unknown propensity score functions. We study the asymptotic properties of the estimator, and we showcase the parametric convergence rate of the proposed procedure. We illustrate in simulations and an empirical application the advantage of the method over state-of-the-art competitors.
翻译:本文讨论了时间变化治疗的估计和推论问题。我们建议了治疗史的推论方法,引入了\ textit{ 动态} 共变平衡法。我们的方法允许(一) 治疗方法随着时间推移任意传播;(二) 治疗效果的非常态性和异质性;(三) 高维共变和(四) 未知的惯性评分功能。我们研究了测量器的无药性特性,并展示了拟议程序的准参数趋同率。我们在模拟和实验应用中说明了该方法相对于最先进的竞争对手的优势。