Deep Neural Networks (DNNs) have shown remarkable performance in a diverse range of machine learning applications. However, it is widely known that DNNs are vulnerable to simple adversarial perturbations, which causes the model to incorrectly classify inputs. In this paper, we propose a simple yet effective method to detect adversarial examples, using methods developed to explain the model's behavior. Our key observation is that adding small, humanly imperceptible perturbations can lead to drastic changes in the model explanations, resulting in unusual or irregular forms of explanations. From this insight, we propose an unsupervised detection of adversarial examples using reconstructor networks trained only on model explanations of benign examples. Our evaluations with MNIST handwritten dataset show that our method is capable of detecting adversarial examples generated by the state-of-the-art algorithms with high confidence. To the best of our knowledge, this work is the first in suggesting unsupervised defense method using model explanations.


翻译:深神经网络(DNN)在各种机器学习应用中表现出了显著的成绩。 但是,众所周知,DNN很容易受到简单的对抗性干扰,导致输入分类模型错误。 在本文中,我们提出了一个简单而有效的方法来检测对抗性实例,使用开发的方法来解释模型的行为。我们的主要观察是,增加小的、人类无法察觉的干扰可能导致模型解释的急剧变化,从而导致不同寻常或不正常的解释形式。我们从这一角度出发,我们建议对对抗性实例进行不受监督的检测,使用重建网络,只对良性实例进行示范解释。我们对MNIST手写数据集的评估表明,我们的方法能够非常自信地探测由最先进的算法生成的对抗性实例。据我们所知,这项工作是在建议使用模型解释的非超强防御方法方面所做的第一项工作。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
32+阅读 · 2021年9月16日
专知会员服务
47+阅读 · 2021年4月24日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
4+阅读 · 2018年10月5日
Arxiv
7+阅读 · 2018年6月8日
Arxiv
9+阅读 · 2018年1月4日
Arxiv
4+阅读 · 2015年3月20日
VIP会员
相关VIP内容
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员