Various post-quantum cryptography algorithms have been recently proposed. Supersingluar isogeny Diffie-Hellman key exchange (SIKE) is one of the most promising candidates due to its small key size. However, the SIKE scheme requires numerous finite field multiplications for its isogeny computation, and hence suffers from slow encryption and decryption process. In this paper, we propose a fast finite field multiplier design that performs multiplications in GF(p) with high throughput and low latency. The design accelerates the computation by adopting deep pipelining, and achieves high hardware utilization through data interleaving. The proposed finite field multiplier demonstrates 4.48 times higher throughput than prior work based on the identical fast multiplication algorithm and 1.43 times higher throughput than the state-of-the-art fast finite field multiplier design aimed at SIKE.
翻译:最近提出了各种分子后加密算法。 超级星际异质 Diffie- Hellman 密钥交换( SIKE) 由于其密钥大小, 是最有希望的候选人之一。 但是, SIKE 计划需要许多有限的实地乘数来计算其同源计算, 因而受到缓慢的加密和解密过程的影响。 在本文件中, 我们提议了一种快速有限场乘数设计, 在高吞吐量和低延缓度的GF( p) 中进行乘数。 设计通过采用深管线加快计算速度, 通过数据互换实现高硬件利用率。 拟议的有限场乘数比以前基于相同的快速倍增算法的工程高出4. 48倍, 并且比针对SIKE 的先进快存取域乘数设计高出1.43倍。