Machine learning-based hardware malware detectors (HMDs) offer a potential game changing advantage in defending systems against malware. However, HMDs suffer from adversarial attacks, can be effectively reverse-engineered and subsequently be evaded, allowing malware to hide from detection. We address this issue by proposing a novel HMDs (Stochastic-HMDs) through approximate computing, which makes HMDs' inference computation-stochastic, thereby making HMDs resilient against adversarial evasion attacks. Specifically, we propose to leverage voltage overscaling to induce stochastic computation in the HMDs model. We show that such a technique makes HMDs more resilient to both black-box adversarial attack scenarios, i.e., reverse-engineering and transferability. Our experimental results demonstrate that Stochastic-HMDs offer effective defense against adversarial attacks along with by-product power savings, without requiring any changes to the hardware/software nor to the HMDs' model, i.e., no retraining or fine tuning is needed. Moreover, based on recent results in probably approximately correct (PAC) learnability theory, we show that Stochastic-HMDs are provably more difficult to reverse engineer.


翻译:机器学习型硬件恶意软件探测器(HMDs)在防范恶意软件系统方面提供了潜在的游戏变换优势。然而,HMDs遭受对抗性攻击,可以有效地反向设计,然后躲避,让恶意软件躲避。我们通过粗略计算提出新的HMDs(Stochatic-HMDs)来解决这个问题,使HMDs的推论计算和随机分析,从而使得HMDs具有抵御对抗性规避攻击的适应力。具体地说,我们提议利用电压过压来诱导HMDs模型的随机计算。我们表明,这种技术使HMDs更能适应黑盒对抗性对抗性攻击情景,即反向工程和可转移性。我们的实验结果表明,Stochacast-HMDs提供了有效的防御性攻击,同时避免副产品节能,而无需对硬件/软件或HMDs模型作任何改动,即不需要再培训或微调。此外,根据近期的结果,我们也许更难的Stochably理论显示,我们更难的Stovicaltical-mical-mi变校。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
12+阅读 · 2020年12月10日
Anomalous Instance Detection in Deep Learning: A Survey
Arxiv
11+阅读 · 2019年4月15日
Generalization and Regularization in DQN
Arxiv
6+阅读 · 2019年1月30日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关论文
Arxiv
12+阅读 · 2020年12月10日
Anomalous Instance Detection in Deep Learning: A Survey
Arxiv
11+阅读 · 2019年4月15日
Generalization and Regularization in DQN
Arxiv
6+阅读 · 2019年1月30日
Top
微信扫码咨询专知VIP会员