The availability of large-scale datasets has driven the development of neural models that create summaries from single documents, for generic purposes. When using a summarization system, users often have specific intents with various language realizations, which, depending on the information need, can range from a single keyword to a long narrative composed of multiple questions. Existing summarization systems, however, often either fail to support or act robustly on this query focused summarization task. We introduce LaQSum, the first unified text summarization system that learns Latent Queries from documents for abstractive summarization with any existing query forms. Under a deep generative framework, our system jointly optimizes a latent query model and a conditional language model, allowing users to plug-and-play queries of any type at test time. Despite learning from only generic summarization data and requiring no further optimization for downstream summarization tasks, our system robustly outperforms strong comparison systems across summarization benchmarks with different query types, document settings, and target domains.
翻译:大规模数据集的可用性推动了神经模型的开发,这些模型从单一的文档中产生摘要,用于通用目的。在使用汇总系统时,用户往往对各种语言的实现有具体意图,根据信息需要,这些目的从单一关键词到由多个问题组成的长话短说不等。但现有的汇总系统往往不能支持或强有力地执行这项以查询为重点的汇总任务。我们引入了第一个统一的文本汇总系统LaQSum,即第一个统一文本汇总系统,它从文档中学习长话短说,与任何现有的查询形式进行抽象汇总。在一个深层的组合框架下,我们的系统共同优化了潜在查询模式和有条件的语言模式,允许用户在测试时间进行任何类型的插接和播放查询。尽管我们系统仅从通用的汇总数据中学习,不需要对下游汇总任务进行进一步优化,但我们的系统强力超越了与不同查询类型、文件设置和目标域的汇总基准的强力比较系统。