The availability of large-scale datasets has driven the development of neural models that create summaries from single documents, for generic purposes. When using a summarization system, users often have specific intents with various language realizations, which, depending on the information need, can range from a single keyword to a long narrative composed of multiple questions. Existing summarization systems, however, often either fail to support or act robustly on this query focused summarization task. We introduce LaQSum, the first unified text summarization system that learns Latent Queries from documents for abstractive summarization with any existing query forms. Under a deep generative framework, our system jointly optimizes a latent query model and a conditional language model, allowing users to plug-and-play queries of any type at test time. Despite learning from only generic summarization data and requiring no further optimization for downstream summarization tasks, our system robustly outperforms strong comparison systems across summarization benchmarks with different query types, document settings, and target domains.


翻译:大规模数据集的可用性推动了神经模型的开发,这些模型从单一的文档中产生摘要,用于通用目的。在使用汇总系统时,用户往往对各种语言的实现有具体意图,根据信息需要,这些目的从单一关键词到由多个问题组成的长话短说不等。但现有的汇总系统往往不能支持或强有力地执行这项以查询为重点的汇总任务。我们引入了第一个统一的文本汇总系统LaQSum,即第一个统一文本汇总系统,它从文档中学习长话短说,与任何现有的查询形式进行抽象汇总。在一个深层的组合框架下,我们的系统共同优化了潜在查询模式和有条件的语言模式,允许用户在测试时间进行任何类型的插接和播放查询。尽管我们系统仅从通用的汇总数据中学习,不需要对下游汇总任务进行进一步优化,但我们的系统强力超越了与不同查询类型、文件设置和目标域的汇总基准的强力比较系统。

0
下载
关闭预览

相关内容

【论文推荐】文本摘要简述
专知会员服务
68+阅读 · 2020年7月20日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【文本摘要】Text Summarization文本摘要与注意力机制
深度学习自然语言处理
9+阅读 · 2020年3月15日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Audio Retrieval with Natural Language Queries
Arxiv
0+阅读 · 2021年7月22日
Arxiv
5+阅读 · 2019年8月22日
Arxiv
12+阅读 · 2019年3月14日
VIP会员
相关VIP内容
相关资讯
【文本摘要】Text Summarization文本摘要与注意力机制
深度学习自然语言处理
9+阅读 · 2020年3月15日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员