Reduced order modeling (ROM) is a field of techniques that approximates complex physics-based models of real-world processes by inexpensive surrogates that capture important dynamical characteristics with a smaller number of degrees of freedom. Traditional ROM techniques such as proper orthogonal decomposition (POD) focus on linear projections of the dynamics onto a set of spectral features. In this paper we explore the construction of ROM using autoencoders (AE) that perform nonlinear projections of the system dynamics onto a low dimensional manifold learned from data. The approach uses convolutional neural networks (CNN) to learn spatial features as opposed to spectral, and utilize a physics informed (PI) cost function in order to capture temporal features as well. Our investigation using the quasi-geostrophic equations reveals that while the PI cost function helps with spatial reconstruction, spatial features are less powerful than spectral features, and that construction of ROMs through machine learning-based methods requires significant investigation into novel non-standard methodologies.


翻译:降序建模(ROM)是一个技术领域,它通过廉价的代孕技术,将基于物理的复杂真实世界过程模型与基于物理的复杂模型相近,这种代孕能捕捉到重要的动态特征,自由度较低; 传统的ROM技术,例如适当的正正正分分解(POD),侧重于对一系列光谱特征的动态线性预测; 本文中我们探讨利用对系统动态进行非线性预测的自动解析器(AE),将系统动态进行非线性预测,转化为从数据中学习的低维元元元; 这种方法利用革命神经网络(CNN)学习空间特征而不是光谱,并利用物理学知情(PI)成本功能,以捕捉时间特征。 我们使用准地球营养方程式进行的调查显示,虽然PI的成本功能有助于空间重建,但空间特征比光谱特征的强度要小,通过机器学习方法建造ROM需要大量调查新的非标准方法。

0
下载
关闭预览

相关内容

自动编码器是一种人工神经网络,用于以无监督的方式学习有效的数据编码。自动编码器的目的是通过训练网络忽略信号“噪声”来学习一组数据的表示(编码),通常用于降维。与简化方面一起,学习了重构方面,在此,自动编码器尝试从简化编码中生成尽可能接近其原始输入的表示形式,从而得到其名称。基本模型存在几种变体,其目的是迫使学习的输入表示形式具有有用的属性。自动编码器可有效地解决许多应用问题,从面部识别到获取单词的语义。
《行为与认知机器人学》,241页pdf
专知会员服务
53+阅读 · 2021年4月11日
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
52+阅读 · 2020年9月7日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年10月18日
VIP会员
Top
微信扫码咨询专知VIP会员