We study the ability of neural networks to calculate feedback control signals that steer trajectories of continuous time non-linear dynamical systems on graphs, which we represent with neural ordinary differential equations (neural ODEs). To do so, we present a neural-ODE control (NODEC) framework and find that it can learn feedback control signals that drive graph dynamical systems into desired target states. While we use loss functions that do not constrain the control energy, our results show, in accordance with related work, that NODEC produces low energy control signals. Finally, we evaluate the performance and versatility of NODEC against well-known feedback controllers and deep reinforcement learning. We use NODEC to generate feedback controls for systems of more than one thousand coupled, non-linear ODEs that represent epidemic processes and coupled oscillators.
翻译:我们研究神经网络计算反馈控制信号的能力,这些信号引导图表上连续时间非线性动态系统的轨迹,我们用神经普通差分方程式(神经极分方程式)代表这些信号。为此,我们提出了一个神经-体(NODEC)控制框架,并发现它可以学习反馈控制信号,将图形动态系统推进到理想的目标状态。我们使用不限制控制能量的损失功能,但我们的结果显示,根据相关工作,NODEC产生低能量控制信号。最后,我们根据众所周知的反馈控制器和深层强化学习,评估NODEC的性能和多功能。我们利用NODEC为代表流行病过程和混合振动器的一千多个相联的非线性动态系统产生反馈控制。