Graph Neural Networks (GNNs) are often used for tasks involving the geometry of a given graph, such as molecular dynamics simulation. Although the distance matrix of a geometric graph contains complete geometric information, it has been demonstrated that Message Passing Neural Networks (MPNNs) are insufficient for learning this geometry. In this work, we expand on the families of counterexamples that MPNNs are unable to distinguish from their distance matrices, by constructing families of novel and symmetric geometric graphs. We then propose $k$-DisGNNs, which can effectively exploit the rich geometry contained in the distance matrix. We demonstrate the high expressive power of our models by proving the universality of $k$-DisGNNs for distinguishing geometric graphs when $k \geq 3$, and that some existing well-designed geometric models can be unified by $k$-DisGNNs as special cases. Most importantly, we establish a connection between geometric deep learning and traditional graph representation learning, showing that those highly expressive GNN models originally designed for graph structure learning can also be applied to geometric deep learning problems with impressive performance, and that existing complex, equivariant models are not the only solution. Experimental results verify our theory.


翻译:图神经网络(GNN)经常用于涉及给定图形的几何形状的任务,例如分子动力学模拟。虽然几何图的距离矩阵包含完整的几何信息,但已经证明,消息传递神经网络(MPNN)无法学习这种几何形状。在这项工作中,我们通过构建新的对称几何图的族群,扩展了MPNN无法与其距离矩阵区分的家族。然后,我们提出了$k$-DisGNNs,可以有效地利用距离矩阵中所包含的丰富几何信息。我们通过证明$k \geq 3$时$k$-DisGNNs可区分几何图的普适性,以及一些现有的精心设计的几何模型可以通过$k$-DisGNNs作为特殊情况统一的方式展示了我们模型的高表达能力 。最重要的是,我们建立了几何深度学习和传统图表示学习之间的联系,表明那些最初为图结构学习设计的高表达的GNN模型也可以应用于具有令人印象深刻的性能的几何深度学习问题,并且现有的复杂,等变的模型不是唯一的解决方案。实验结果验证了我们的理论。

1
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
最新《几何深度学习》教程,100页ppt,Geometric Deep Learning
专知会员服务
100+阅读 · 2020年7月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
浅聊对比学习(Contrastive Learning)
极市平台
2+阅读 · 2022年7月26日
浅聊对比学习(Contrastive Learning)第一弹
PaperWeekly
0+阅读 · 2022年6月10日
图神经网络库PyTorch geometric
图与推荐
17+阅读 · 2020年3月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
68+阅读 · 2022年9月7日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
12+阅读 · 2021年7月26日
Heterogeneous Deep Graph Infomax
Arxiv
12+阅读 · 2019年11月19日
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
VIP会员
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
浅聊对比学习(Contrastive Learning)
极市平台
2+阅读 · 2022年7月26日
浅聊对比学习(Contrastive Learning)第一弹
PaperWeekly
0+阅读 · 2022年6月10日
图神经网络库PyTorch geometric
图与推荐
17+阅读 · 2020年3月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员