We prove calibration guarantees for the popular histogram binning (also called uniform-mass binning) method of Zadrozny and Elkan [2001]. Histogram binning has displayed strong practical performance, but theoretical guarantees have only been shown for sample split versions that avoid 'double dipping' the data. We demonstrate that the statistical cost of sample splitting is practically significant on a credit default dataset. We then prove calibration guarantees for the original method that double dips the data, using a certain Markov property of order statistics. Based on our results, we make practical recommendations for choosing the number of bins in histogram binning. In our illustrative simulations, we propose a new tool for assessing calibration -- validity plots -- which provide more information than an ECE estimate.
翻译:我们证明Zadrozny和Elkan [2001] 的流行直方图(也称统一马质宾宁)方法的校准保证。 直方图宾宁表现出很强的实际性能, 但理论保证只为样本分解的版本显示, 避免“ 双重稀释” 数据。 我们证明抽样分解的统计成本对信用违约数据集来说实际上很重要。 然后, 我们用某些按序统计的Markov属性来证明对数据双下沉的原始方法的校准保证。 根据我们的结果, 我们提出了在直方图宾馆中选择文件箱数的实用建议。 在我们的示例模拟中, 我们提出了一个新的评估校准工具 -- -- 有效性图谱 -- -- 提供了比欧洲经委会估计更多的信息。