In the context of digital therapy interventions, such as internet-delivered Cognitive Behavioral Therapy (iCBT) for the treatment of depression and anxiety, extensive research has shown how the involvement of a human supporter or coach, who assists the person undergoing treatment, improves user engagement in therapy and leads to more effective health outcomes than unsupported interventions. Seeking to maximize the effects and outcomes of this human support, the research investigates how new opportunities provided through recent advances in the field of AI and machine learning (ML) can contribute useful data insights to effectively support the work practices of iCBT supporters. This paper reports detailed findings of an interview study with 15 iCBT supporters that deepens understanding of their existing work practices and information needs with the aim to meaningfully inform the development of useful, implementable ML applications particularly in the context of iCBT treatment for depression and anxiety. The analysis contributes (1) a set of six themes that summarize the strategies and challenges that iCBT supporters encounter in providing effective, personalized feedback to their mental health clients; and in response to these learnings, (2) presents for each theme concrete opportunities for how methods of ML could help support and address identified challenges and information needs. It closes with reflections on potential social, emotional and pragmatic implications of introducing new machine-generated data insights within supporter-led client review practices.
翻译:在数字治疗干预措施方面,例如因特网提供的治疗抑郁和焦虑的认知行为疗法(iCBT),广泛的研究显示,一名人类支持者或教练如何参与,协助接受治疗者,改善用户对治疗的参与,并导致更有效的健康结果,而不是无支持的干预。为了尽量扩大这种人类支持的效果和结果,研究探讨了通过最近在AI和机器学习(ML)领域取得的进展提供的新机会如何能够提供有用的数据洞察力,以有效支持iCBT支持者的工作做法。本文件详细报告了与15名iCBT支持者进行的访谈研究的详细结果,该研究加深了对其现有工作做法和信息需求的了解,目的是为开发有用的、可执行的ML应用程序提供有意义的信息,特别是在ICBT治疗抑郁和焦虑的情况下。分析有助于:(1) 一套由六个主题组成的系列,总结了AI和机器学习(ML)支持者在向其心理健康客户提供有效、个性化反馈方面遇到的战略和挑战;以及对这些学习的回应,2 为每个主题提供了具体的机会,说明ML如何在实际的见解影响中提供密切方法,并明确了客户对新思维影响的潜在认识需求进行审查。