Classification of multivariate functional data is explored in this paper, particularly for functional data defined on different domains. Using the partial least squares (PLS) regression, we propose two classification methods. The first one uses the equivalence between linear discriminant analysis and linear regression. The second is a decision tree based on the first technique. Moreover, we prove that multivariate PLS components can be estimated using univariate PLS components. This offers an alternative way to calculate PLS for multivariate functional data. Finite sample studies on simulated data and real data applications show that our algorithms are competitive with linear discriminant on principal components scores and black-boxes models.
翻译:本文探讨了多变量功能数据的分类,特别是不同领域界定的功能数据。我们建议采用两种分类方法:第一种是线性对角分析与线性回归的等值;第二种是基于第一种技术的决策树;此外,我们证明,多变量 PLS组件可以使用单变量 PLS组件来估算。这为计算多变量功能数据的PLS提供了另一种方法。关于模拟数据和真实数据应用的微量抽样研究显示,我们的算法与主要部件分数和黑盒模型的线性对称具有竞争力。