Suppose there are $N$ units and $D$ interventions. We aim to learn the average potential outcome associated with every unit-intervention pair, i.e., $N \times D$ causal parameters. While running $N \times D$ experiments is conceivable, it can be expensive or infeasible. This work introduces an experiment design, synthetic A/B testing, and the synthetic interventions (SI) estimator to recover all $N \times D$ causal parameters while observing each unit under at most two interventions, independent of $D$. Under a novel tensor factor model for potential outcomes across units, measurements, and interventions, we establish the identification of each parameter. Further, we show the SI estimator is finite-sample consistent and asymptotically normal. Collectively, these also lead to novel results for panel data settings, particularly for synthetic controls. We empirically validate our experiment design using real e-commerce data from a large-scale A/B test.


翻译:假设有单位单位为N美元,干预措施为$D美元。 我们的目标是了解每个单位- 干预对的人均潜在结果, 即, 美元/ 乘以D美元因果参数。 虽然运行 $/ 乘以D美元实验是可以想象的, 但它可能是昂贵的或不可行的。 这项工作引入了实验设计、 合成A/ B 测试和合成干预( SI) 估计器, 以回收所有美元/ 乘以D美元因果参数, 同时在最多两次干预中观察每个单位, 不受D美元影响的因果参数。 在针对各单位、 测量和干预的潜在结果的新颖的 " 点数 " 模型下, 我们确定每个参数的特性。 此外, 我们展示了SI 估计器是有限的、 一致的、 暂时的正常的。 总体而言, 这还导致小组数据设置的新结果, 特别是合成控制。 我们从经验上验证我们的实验设计, 使用大规模A/ B 测试中的真实的电子商务数据。

0
下载
关闭预览

相关内容

Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
26+阅读 · 2022年2月20日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月19日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员