Gravitational waves from the coalescence of compact-binary sources are now routinely observed by Earth bound detectors. The most sensitive search algorithms convolve many different pre-calculated gravitational waveforms with the detector data and look for coincident matches between different detectors. Machine learning is being explored as an alternative approach to building a search algorithm that has the prospect to reduce computational costs and target more complex signals. In this work we construct a two-detector search for gravitational waves from binary black hole mergers using neural networks trained on non-spinning binary black hole data from a single detector. The network is applied to the data from both observatories independently and we check for events coincident in time between the two. This enables the efficient analysis of large quantities of background data by time-shifting the independent detector data. We find that while for a single detector the network retains $91.5\%$ of the sensitivity matched filtering can achieve, this number drops to $83.9\%$ for two observatories. To enable the network to check for signal consistency in the detectors, we then construct a set of simple networks that operate directly on data from both detectors. We find that none of these simple two-detector networks are capable of improving the sensitivity over applying networks individually to the data from the detectors and searching for time coincidences.
翻译:由紧凑二元源的聚合产生的引力波现在由地球约束探测器例行观测。 最敏感的搜索算法将许多不同预算的引力波形与探测器数据混在一起, 并寻找不同探测器之间的巧合。 正在探索机器学习, 作为一种替代方法, 以建立一个搜索算法, 该算法有可能降低计算成本, 并瞄准更复杂的信号。 在这项工作中, 我们用对非同步二进制黑洞数据的神经网络, 对二进制黑洞合并产生的引力波进行双分辨器搜索。 最敏感的搜索算法将许多预算引力波与探测器的数据相融合。 网络将独立地用于两个观测站的数据, 我们独立地检查两个观测站的数据, 通过时间调整对大量的背景数据进行高效的分析。 我们发现, 对于单个检测器来说, 网络保留了与过滤器相匹配的敏感度91.5 美元, 这个数字将下降到83.9 美元 美元 用于两个观测站 。 为使网络能够从简单的探测器中检查信号的一致性, 我们随后从两个探测器直接地建立一套简单的数据传感器, 。