We show that B-spline quarks and the associated quarklets fit into the theory of biorthogonal multiwavelets. Quark vectors are used to define sequences of subspaces $ V_{p,j} $ of $ L_{2}(\mathbb{R}) $ which fulfill almost all conditions of a multiresolution analysis. Under some special conditions on the parameters they even satisfy all those properties. Moreover we prove that quarks and quarklets possess modulation matrices which fulfill the perfect reconstruction condition. Furthermore we show the existence of generalized dual quarks and quarklets which are known to be at least compactly supported tempered distributions from $\mathcal{S}'(\mathbb{R})$. Finally we also verify that quarks and quarklets can be used to define sequences of subspaces $ W_{p,j} $ of $ L_{2}(\mathbb{R}) $ that yield non-orthogonal decompositions of $ L_{2}(\mathbb{R}) $.


翻译:我们显示B- spline 夸克和相关的夸克子体符合双振多波子理论。 夸克矢量用于定义满足多种分辨率分析几乎所有条件的子空间序列 $ V ⁇ p, j}$ $ ⁇ 2} (\ mathbb{R}) 美元。 在参数的某些特殊条件下, 它们甚至满足所有这些特性。 此外, 我们证明 夸克和 qurklets 拥有满足完美重建条件的调制矩阵。 此外, 我们显示存在通用的双夸克和夸克子, 已知它们至少由$\ mathcal{S} (\mathb{R}$ ) 以压实方式支持的温度分布 。 最后, 我们还核实, 夸克和 ⁇ 可以用来定义子空间序列 $ W ⁇ p, j} $ L ⁇ 2} (\mathb{R} $ 产生 $ L ⁇ 2} (mathrobb} $ 。

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关VIP内容
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员