The performance of an algorithm often critically depends on its parameter configuration. While a variety of automated algorithm configuration methods have been proposed to relieve users from the tedious and error-prone task of manually tuning parameters, there is still a lot of untapped potential as the learned configuration is static, i.e., parameter settings remain fixed throughout the run. However, it has been shown that some algorithm parameters are best adjusted dynamically during execution, e.g., to adapt to the current part of the optimization landscape. Thus far, this is most commonly achieved through hand-crafted heuristics. A promising recent alternative is to automatically learn such dynamic parameter adaptation policies from data. In this article, we give the first comprehensive account of this new field of automated dynamic algorithm configuration (DAC), present a series of recent advances, and provide a solid foundation for future research in this field. Specifically, we (i) situate DAC in the broader historical context of AI research; (ii) formalize DAC as a computational problem; (iii) identify the methods used in prior-art to tackle this problem; (iv) conduct empirical case studies for using DAC in evolutionary optimization, AI planning, and machine learning.
翻译:一种算法的性能往往主要取决于其参数配置。虽然已经提出了各种自动化算法配置方法,使用户摆脱人工调试参数的乏味和易出错任务,但随着所学的配置是静态的,即参数设置在整个运行过程中保持不变,仍有许多尚未开发的潜力。然而,已经表明,在执行过程中,有些算法参数最好进行动态调整,例如适应优化现状的当前部分。迄今为止,这最通常是通过手工制作的超常方法实现的。最近的一个有希望的替代办法是从数据中自动学习这种动态参数调整政策。在本篇文章中,我们首次全面介绍了这个新的自动动态算法配置领域(DAC),介绍了最近的一系列进展,并为这一领域的未来研究提供了坚实的基础。具体地说,我们(一) 将发援会置于AI研究的更广泛历史背景中;(二) 将发援会正规化为一种计算问题;(三) 确定以前用于解决这一问题的方法;(四) 在进化、AI规划和机器学习中使用DAC进行经验案例研究。