We design a novel framework to examine market efficiency through out-of-sample (OOS) predictability. We frame the asset pricing problem as a machine learning classification problem and construct classification models to predict return states. The prediction-based portfolios beat the market with significant OOS economic gains. We measure prediction accuracies directly. For each model, we introduce a novel application of binomial test to test the accuracy of 3.34 million return state predictions. The tests show that our models can extract useful contents from historical information to predict future return states. We provide unique economic insights about OOS predictability and machine learning models.


翻译:我们设计了一个新的框架,通过非抽样(OOS)的可预测性来审查市场效率。我们把资产定价问题描述为一个机器学习分类问题,并构建分类模型来预测回报状态。基于预测的投资组合以OS的显著经济收益战胜了市场。我们直接测量了预测宽度。我们为每个模型引入了二元测试的新应用,以测试334万返回状态预测的准确性。测试表明我们的模型可以从历史信息中提取有用的内容来预测未来的回报状态。我们对OOS的可预测性和机器学习模型提供了独特的经济洞察力。

0
下载
关闭预览

相关内容

机器学习(Machine Learning)是一个研究计算学习方法的国际论坛。该杂志发表文章,报告广泛的学习方法应用于各种学习问题的实质性结果。该杂志的特色论文描述研究的问题和方法,应用研究和研究方法的问题。有关学习问题或方法的论文通过实证研究、理论分析或与心理现象的比较提供了坚实的支持。应用论文展示了如何应用学习方法来解决重要的应用问题。研究方法论文改进了机器学习的研究方法。所有的论文都以其他研究人员可以验证或复制的方式描述了支持证据。论文还详细说明了学习的组成部分,并讨论了关于知识表示和性能任务的假设。 官网地址:http://dblp.uni-trier.de/db/journals/ml/
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
专知会员服务
115+阅读 · 2019年12月24日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
3+阅读 · 2019年4月19日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】深度学习情感分析综述
机器学习研究会
58+阅读 · 2018年1月26日
推荐免费书|MIT出版《Reinforcement Learning: An Introduction》
全球人工智能
3+阅读 · 2017年12月1日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
49+阅读 · 2021年5月9日
Arxiv
32+阅读 · 2021年3月8日
Deep Learning for Energy Markets
Arxiv
10+阅读 · 2019年4月10日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Arxiv
5+阅读 · 2018年1月14日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
3+阅读 · 2019年4月19日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】深度学习情感分析综述
机器学习研究会
58+阅读 · 2018年1月26日
推荐免费书|MIT出版《Reinforcement Learning: An Introduction》
全球人工智能
3+阅读 · 2017年12月1日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
相关论文
Arxiv
49+阅读 · 2021年5月9日
Arxiv
32+阅读 · 2021年3月8日
Deep Learning for Energy Markets
Arxiv
10+阅读 · 2019年4月10日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Arxiv
5+阅读 · 2018年1月14日
Top
微信扫码咨询专知VIP会员