We design a novel framework to examine market efficiency through out-of-sample (OOS) predictability. We frame the asset pricing problem as a machine learning classification problem and construct classification models to predict return states. The prediction-based portfolios beat the market with significant OOS economic gains. We measure prediction accuracies directly. For each model, we introduce a novel application of binomial test to test the accuracy of 3.34 million return state predictions. The tests show that our models can extract useful contents from historical information to predict future return states. We provide unique economic insights about OOS predictability and machine learning models.
翻译:我们设计了一个新的框架,通过非抽样(OOS)的可预测性来审查市场效率。我们把资产定价问题描述为一个机器学习分类问题,并构建分类模型来预测回报状态。基于预测的投资组合以OS的显著经济收益战胜了市场。我们直接测量了预测宽度。我们为每个模型引入了二元测试的新应用,以测试334万返回状态预测的准确性。测试表明我们的模型可以从历史信息中提取有用的内容来预测未来的回报状态。我们对OOS的可预测性和机器学习模型提供了独特的经济洞察力。