The United Nations identified gender equality as a Sustainable Development Goal in 2015, recognizing the underrepresentation of women in politics as a specific barrier to achieving gender equality. Political systems around the world experience gender inequality across all levels of elected government as fewer women run for office than men. This is due in part to online abuse, particularly on social media platforms like Twitter, where women seeking or in power tend to be targeted with more toxic maltreatment than their male counterparts. In this paper, we present reflections on ParityBOT - the first natural language processing-based intervention designed to affect online discourse for women in politics for the better, at scale. Deployed across elections in Canada, the United States and New Zealand, ParityBOT was used to analyse and classify more than 12 million tweets directed at women candidates and counter toxic tweets with supportive ones. From these elections we present three case studies highlighting the current limitations of, and future research and application opportunities for, using a natural language processing-based system to detect online toxicity, specifically with regards to contextually important microaggressions. We examine the rate of false negatives, where ParityBOT failed to pick up on insults directed at specific high profile women, which would be obvious to human users. We examine the unaddressed harms of microaggressions and the potential of yet unseen damage they cause for women in these communities, and for progress towards gender equality overall, in light of these technological blindspots. This work concludes with a discussion on the benefits of partnerships between nonprofit social groups and technology experts to develop responsible, socially impactful approaches to addressing online hate.


翻译:联合国将性别平等确定为2015年的一项可持续发展目标,确认妇女在政治中的代表性不足是实现两性平等的具体障碍。世界各地的政治制度在民选政府各级都经历两性不平等,因为女性竞选公职的人数少于男性。部分原因是在线虐待,特别是在诸如推特等社交媒体平台上,寻求或掌权的妇女往往比男性同行受到更毒的虐待。我们在本文件中反思了PaityBOT,这是旨在影响妇女在政治中的在线对话的首个天然语言处理干预,目的是从规模上改善妇女的政治中的在线对话。在加拿大、美国和新西兰的选举期间,PacyBOT被运用于对超过1 200万次针对女性候选人的推特进行分析和分类,并用支持词反驳有毒的推特。我们从这些选举中提出三个案例研究,强调目前存在的局限性,以及未来研究和应用机会,利用基于自然语言的处理系统来检测在线毒性,特别是从背景上看重要的微观侵略。我们审视了虚假的负面比率,在加拿大、美国和新西兰的选举期间,PacyBOTOT在非赢利方面未能从非赢利到女性候选人的在线讨论,而从社会上审视了这些不透明的社会上对妇女造成伤害的潜在。

0
下载
关闭预览

相关内容

机器学习(Machine Learning)是一个研究计算学习方法的国际论坛。该杂志发表文章,报告广泛的学习方法应用于各种学习问题的实质性结果。该杂志的特色论文描述研究的问题和方法,应用研究和研究方法的问题。有关学习问题或方法的论文通过实证研究、理论分析或与心理现象的比较提供了坚实的支持。应用论文展示了如何应用学习方法来解决重要的应用问题。研究方法论文改进了机器学习的研究方法。所有的论文都以其他研究人员可以验证或复制的方式描述了支持证据。论文还详细说明了学习的组成部分,并讨论了关于知识表示和性能任务的假设。 官网地址:http://dblp.uni-trier.de/db/journals/ml/
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
61+阅读 · 2020年2月17日
吴恩达新书《Machine Learning Yearning》完整中文版
专知会员服务
145+阅读 · 2019年10月27日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Generalized Out-of-Distribution Detection: A Survey
Arxiv
15+阅读 · 2021年10月21日
Arxiv
35+阅读 · 2021年8月2日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
22+阅读 · 2019年11月24日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
VIP会员
相关VIP内容
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
61+阅读 · 2020年2月17日
吴恩达新书《Machine Learning Yearning》完整中文版
专知会员服务
145+阅读 · 2019年10月27日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员