Generative Adversarial Networks (GANs) have been widely applied in different scenarios thanks to the development of deep neural networks. The original GAN was proposed based on the non-parametric assumption of the infinite capacity of networks. However, it is still unknown whether GANs can fit the target distribution without any prior information. Due to the overconfident assumption, many issues remain unaddressed in GANs' training, such as non-convergence, mode collapses, gradient vanishing. Regularization and normalization are common methods of introducing prior information to stabilize training and improve discrimination. Although a handful number of regularization and normalization methods have been proposed for GANs, to the best of our knowledge, there exists no comprehensive survey that primarily focuses on objectives and development of these methods, apart from some in-comprehensive and limited scope studies. In this work, we conduct a comprehensive survey on the regularization and normalization techniques from different perspectives of GANs training. First, we systematically describe different perspectives of GANs training and thus obtain the different objectives of regularization and normalization. Based on these objectives, we propose a new taxonomy. Furthermore, we compare the performance of the mainstream methods on different datasets and investigate the applications of regularization and normalization techniques that have been frequently employed in state-of-the-art GANs. Finally, we highlight potential future directions of research in this domain. Code and studies related to the regularization and normalization of GANs in this work is summarized on https://github.com/iceli1007/GANs-Regularization-Review.


翻译:由于发展了深层神经网络,不同情景中广泛应用了生成的Adversarial网络(GANs),最初的GAN是根据对网络无限能力的非参数假设提出的,然而,除了一些不全面且范围有限的研究外,尚不清楚GANs是否能够在没有任何事先信息的情况下达到目标分布;由于过于自信的假设,GANs培训中许多问题仍然没有得到解决,如不兼容、模式崩溃、梯度消失等;正规化和正常化是事先介绍信息以稳定培训和改善歧视的常见方法;尽管为GANs提出了少量的正规化和正常化方法,以最佳的知识为基础,但目前还没有一项主要侧重于这些方法的目标和开发的全面调查;此外,我们在这项工作中,对从GANs培训的不同角度出发的正规化和正常化技术进行了全面调查;首先,我们系统地介绍了GANs培训的不同观点,从而获得了正规化和正常化的不同目标;根据这些目标,我们提出了对GANsrationality-Ransality应用的新方法和GANs。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
45+阅读 · 2022年9月19日
Arxiv
19+阅读 · 2022年7月29日
Arxiv
38+阅读 · 2021年8月31日
A Survey on Edge Intelligence
Arxiv
50+阅读 · 2020年3月26日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
VIP会员
相关VIP内容
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员