We study deterministic and randomized streaming algorithms for word problems of finitely generated groups. For finitely generated linear groups, metabelian groups and free solvable groups we show the existence of randomized streaming algorithms with logarithmic space complexity for their word problems. We also show that the class of finitely generated groups with a logspace randomized streaming algorithm for the word problem is closed under several group theoretical constructions: finite extensions, direct products, free products and wreath products by free abelian groups. We contrast these results with several lower bound. An example of a finitely presented group, where the word problem has only a linear space randomized streaming algorithm, is Thompson's group $F$.
翻译:我们研究有限生成组的文字问题确定和随机流动算法。 对于有限生成的线性组、美友组和自由溶解组,我们展示了存在有对数空间复杂度的对数流算法的词性问题。 我们还显示,有对数空间随机流算法的词问题定数流算法的有限生成组类在几个组的理论构造下已经关闭: 有限扩展、 直接产品、 免费产品和花环产品, 由自由的ABelian组来比较这些结果。 我们将这些结果与几个较低约束相对照。 一个有定数显示的组的例子, 这个词的问题只有线性空间随机流算法, 即Thompson的美元组。