The road to computing on quantum devices has been accelerated by the promises that come from using Shor's algorithm to reduce the complexity of prime factorization. However, this promise hast not yet been realized due to noisy qubits and lack of robust error correction schemes. Here we explore a promising, alternative method for prime factorization that uses well-established techniques from variational imaginary time evolution. We create a Hamiltonian whose ground state encodes the solution to the problem and use variational techniques to evolve a state iteratively towards these prime factors. We show that the number of circuits evaluated in each iteration scales as O(n^{5}d), where n is the bit-length of the number to be factorized and $d$ is the depth of the circuit. We use a single layer of entangling gates to factorize several numbers represented using 7, 8, and 9-qubit Hamiltonians. We also verify the method's performance by implementing it on the IBMQ Lima hardware.
翻译:量子装置的计算道路因利用Shor的算法降低质因子化的复杂程度而加快。 但是,由于吵闹的 ⁇ 和缺乏强健的错误纠正计划,这一承诺尚未实现。 在这里,我们探索了一种有希望的、可替代的质因子化方法,它使用从变幻的假想时间演进中久已形成的技术。 我们创造了一个汉密尔顿人,他的地面状态对问题的解决方案进行了编码,并使用变异技术使国家朝着这些主要因素反复演变。 我们显示了每个迭代尺度(O(n ⁇ 5}d)中被评估的电路数数量,即需要因子化的比特长度和美元是电路的深度。 我们用一个单层的电门来将7、8和9公分的汉密尔密尔顿人数进行计。 我们还通过在IBMQ利马硬件上实施该方法来验证该方法的性能。