The road to computing on quantum devices has been accelerated by the promises that come from using Shor's algorithm to reduce the complexity of prime factorization. However, this promise hast not yet been realized due to noisy qubits and lack of robust error correction schemes. Here we explore a promising, alternative method for prime factorization that uses well-established techniques from variational imaginary time evolution. We create a Hamiltonian whose ground state encodes the solution to the problem and use variational techniques to evolve a state iteratively towards these prime factors. We show that the number of circuits evaluated in each iteration scales as O(n^{5}d), where n is the bit-length of the number to be factorized and $d$ is the depth of the circuit. We use a single layer of entangling gates to factorize several numbers represented using 7, 8, and 9-qubit Hamiltonians. We also verify the method's performance by implementing it on the IBMQ Lima hardware.


翻译:量子装置的计算道路因利用Shor的算法降低质因子化的复杂程度而加快。 但是,由于吵闹的 ⁇ 和缺乏强健的错误纠正计划,这一承诺尚未实现。 在这里,我们探索了一种有希望的、可替代的质因子化方法,它使用从变幻的假想时间演进中久已形成的技术。 我们创造了一个汉密尔顿人,他的地面状态对问题的解决方案进行了编码,并使用变异技术使国家朝着这些主要因素反复演变。 我们显示了每个迭代尺度(O(n ⁇ 5}d)中被评估的电路数数量,即需要因子化的比特长度和美元是电路的深度。 我们用一个单层的电门来将7、8和9公分的汉密尔密尔顿人数进行计。 我们还通过在IBMQ利马硬件上实施该方法来验证该方法的性能。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
已删除
将门创投
6+阅读 · 2019年9月3日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
5+阅读 · 2019年2月28日
Learning to Importance Sample in Primary Sample Space
Arxiv
4+阅读 · 2018年4月30日
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关资讯
已删除
将门创投
6+阅读 · 2019年9月3日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员