In order to certify performance and safety, feedback control requires precise characterization of sensor errors. In this paper, we provide guarantees on such feedback systems when sensors are characterized by solving a supervised learning problem. We show a uniform error bound on nonparametric kernel regression under a dynamically-achievable dense sampling scheme. This allows for a finite-time convergence rate on the sub-optimality of using the regressor in closed-loop for waypoint tracking. We demonstrate our results in simulation with simplified unmanned aerial vehicle and autonomous driving examples.
翻译:为了验证性能和安全性,反馈控制要求对传感器错误进行精确的定性。在本文件中,当传感器的特征是解决一个受监督的学习问题时,我们对这种反馈系统提供保障。根据动态可实现的密集采样计划,我们显示一个非参数内核回归的统一错误。这样,在闭路路跟踪中使用递减器进行路由跟踪的亚最佳程度上,可以有一定时间的趋同率。我们用简化的无人驾驶飞行器和自主驾驶实例进行模拟,展示了我们的结果。