We study the problem of regret minimization in a multi-armed bandit setup where the agent is allowed to play multiple arms at each round by spreading the resources usually allocated to only one arm. At each iteration the agent selects a normalized power profile and receives a Gaussian vector as outcome, where the unknown variance of each sample is inversely proportional to the power allocated to that arm. The reward corresponds to a linear combination of the power profile and the outcomes, resembling a linear bandit. By spreading the power, the agent can choose to collect information much faster than in a traditional multi-armed bandit at the price of reducing the accuracy of the samples. This setup is fundamentally different from that of a linear bandit -- the regret is known to scale as $\Theta(\sqrt{T})$ for linear bandits, while in this setup the agent receives a much more detailed feedback, for which we derive a tight $\log(T)$ problem-dependent lower-bound. We propose a Thompson-Sampling-based strategy, called Weighted Thompson Sampling (\WTS), that designs the power profile as its posterior belief of each arm being the best arm, and show that its upper bound matches the derived logarithmic lower bound. Finally, we apply this strategy to a problem of control and system identification, where the goal is to estimate the maximum gain (also called $\mathcal{H}_\infty$-norm) of a linear dynamical system based on batches of input-output samples.


翻译:我们研究在多武装土匪设置中最小化遗憾的问题, 在多武装土匪设置中, 代理商可以通过分散通常只分配到一个手臂的资源在每轮中玩多个手臂。 在每次迭代中, 代理商选择一个正常的权力配置, 并接收一个高斯矢量作为结果, 每个样本的未知差异与分配给它的权力成反比。 奖赏相当于权力配置和结果的线性组合, 类似于线性土匪。 通过扩展权力, 代理商可以选择收集信息的速度比传统的多武装土匪快得多, 以降低样品精度为代价。 这种设置与线性土匪的设置有根本不同 -- 众所周知, 每个样本的常规配置是 $\ Theta (sqrt{T}), 而在这个设置中, 代理商会收到一个更详尽的反馈, 我们从一个非常紧的 $( T) 美元与问题相关的小土匪。 我们提议一个基于汤普森的策略, 叫做 Weight Thompson Samliing (WTH\\\S), 这组的设置与一个基本不同的线性战略, 显示其最精度的直径的直径直径直线性系统, 的直径的直径直线性估算, 。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【伯克利-Ke Li】学习优化,74页ppt,Learning to Optimize
专知会员服务
41+阅读 · 2020年7月23日
【普林斯顿大学-微软】加权元学习,Weighted Meta-Learning
专知会员服务
40+阅读 · 2020年3月25日
【WWW2020-华为诺亚方舟论文】元学习推荐系统MetaSelector
专知会员服务
56+阅读 · 2020年2月10日
深度强化学习策略梯度教程,53页ppt
专知会员服务
181+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
已删除
将门创投
6+阅读 · 2019年4月10日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Combinatorial Bandits under Strategic Manipulations
Arxiv
0+阅读 · 2021年8月9日
Arxiv
0+阅读 · 2021年8月7日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【伯克利-Ke Li】学习优化,74页ppt,Learning to Optimize
专知会员服务
41+阅读 · 2020年7月23日
【普林斯顿大学-微软】加权元学习,Weighted Meta-Learning
专知会员服务
40+阅读 · 2020年3月25日
【WWW2020-华为诺亚方舟论文】元学习推荐系统MetaSelector
专知会员服务
56+阅读 · 2020年2月10日
深度强化学习策略梯度教程,53页ppt
专知会员服务
181+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
已删除
将门创投
6+阅读 · 2019年4月10日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员