The application of infrared hyperspectral imagery to geological problems is becoming more popular as data become more accessible and cost-effective. Clustering and classifying spectrally similar materials is often a first step in applications ranging from economic mineral exploration on Earth to planetary exploration on Mars. Semi-manual classification guided by expertly developed spectral parameters can be time consuming and biased, while supervised methods require abundant labeled data and can be difficult to generalize. Here we develop a fully unsupervised workflow for feature extraction and clustering informed by both expert spectral geologist input and quantitative metrics. Our pipeline uses a lightweight autoencoder followed by Gaussian mixture modeling to map the spectral diversity within any image. We validate the performance of our pipeline at submillimeter-scale with expert-labelled data from the Oman ophiolite drill core and evaluate performance at meters-scale with partially classified orbital data of Jezero Crater on Mars (the landing site for the Perseverance rover). We additionally examine the effects of various preprocessing techniques used in traditional analysis of hyperspectral imagery. This pipeline provides a fast and accurate clustering map of similar geological materials and consistently identifies and separates major mineral classes in both laboratory imagery and remote sensing imagery. We refer to our pipeline as "Generalized Pipeline for Spectroscopic Unsupervised clustering of Minerals (GyPSUM)."
翻译:红外线超光谱图像应用于地质问题,随着数据越来越容易获得,成本效益越来越高,人们越来越普遍地采用红外线超光谱图像处理地质问题。光谱相似材料的集束和分类往往是从地球上经济矿物勘探到火星行星勘探等应用的第一步。由专家开发的光谱参数指导的半人工分类可能耗费时间和偏颇,而受监督的方法则需要大量标签数据,难以概括。我们在这里开发一个完全不受监督的地貌提取和集成工作流程,由专家光谱地质学家输入和定量测量数据提供信息。我们管道使用轻量的自动编码器,然后用高山混合混合物建模来绘制任何图像中的光谱多样性图。我们用阿曼黄绿地钻芯的专家标签数据验证了我们在亚模尺度上的管道的性能,并以部分保密的轨道数据评估火星Jezero Crater(persisterer的着陆场站点)的运行情况。我们进一步研究了在对超光谱图像传统分析中使用的各种预处理技术的影响。我们用高光谱图像进行快速和精确的混合分组图绘制。我们用于实验室和连续的实验室。