In this paper, we propose a new framework named Communication Optimal Transport (CommOT) for computing the rate distortion (RD) function. This work is motivated by observing the fact that the transition law and the relative entropy in communication theory can be viewed as the transport plan and the regularized objective function in the optimal transport (OT) model. However, unlike in classical OT problems, the RD function only possesses one-side marginal distribution. Hence, to maintain the OT structure, we introduce slackness variables to fulfill the other-side marginal distribution and then propose a general framework (CommOT) for the RD function. The CommOT model is solved via the alternating optimization technique and the well-known Sinkhorn algorithm. In particular, the expected distortion threshold can be converted into finding the unique root of a one-dimensional monotonic function with only a few steps. Numerical experiments show that our proposed framework (CommOT) for solving the RD function with given distortion threshold is efficient and accurate.
翻译:在本文中,我们提出一个新的框架,名为“通信最佳运输(Commotimal Office) ”, 用于计算汇率扭曲功能(RD) 。 这项工作的动机是观察以下事实:过渡法和通信理论中的相对环状可被视为运输计划和最佳运输模式中正常化的目标功能。 然而,与传统的OT问题不同的是,RD函数只拥有单面边缘分布。 因此,为了维持OT结构,我们引入了疲软变量,以完成其他边边边分布,然后为RD函数提出一个总体框架(ComOT)。 Comot模型通过交替优化技术和众所周知的辛克霍恩算法解决。特别是,预期的扭曲阈值可以转换为只用几个步骤找到单维单面单体函数的独特根。 数字实验表明,我们提议的框架(ComOT) 以设定扭曲阈值解决RD函数是有效和准确的。