CLIP (Contrastive Language-Image Pre-training) is a very recent multi-modal model that jointly learns representations of images and texts. The model is trained on a massive amount of English data and shows impressive performance on zero-shot classification tasks. Training the same model on a different language is not trivial, since data in other languages might be not enough and the model needs high-quality translations of the texts to guarantee a good performance. In this paper, we present the first CLIP model for the Italian Language (CLIP-Italian), trained on more than 1.4 million image-text pairs. Results show that CLIP-Italian outperforms the multilingual CLIP model on the tasks of image retrieval and zero-shot classification.


翻译:CLIP(培训前语言图像控制)是一个非常近期的多模式模型,共同学习图像和文本的表现形式,该模型在大量英文数据上接受培训,并展示了在零发分级任务上令人印象深刻的成绩;对同一模型进行不同语言的培训并非微不足道,因为其他语言的数据可能不够,模型需要高质量的文本翻译,以保证良好的表现;在本文件中,我们介绍了意大利语(意大利语-意大利语)的第一个CLIP模型,该模型经过140多万对图像-文本的培训;结果显示,CLIP-意大利语在图像检索和零发分级任务上超过了多语种的CLIP模型。

1
下载
关闭预览

相关内容

专知会员服务
88+阅读 · 2021年6月29日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
74+阅读 · 2020年4月24日
使用BERT做文本摘要
专知
23+阅读 · 2019年12月7日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
LaoPLM: Pre-trained Language Models for Lao
Arxiv
0+阅读 · 2021年10月13日
Arxiv
5+阅读 · 2020年10月22日
VIP会员
相关资讯
使用BERT做文本摘要
专知
23+阅读 · 2019年12月7日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Top
微信扫码咨询专知VIP会员