Autonomous vehicles use a variety of sensors and machine-learned models to predict the behavior of surrounding road users. Most of the machine-learned models in the literature focus on quantitative error metrics like the root mean square error (RMSE) to learn and report their models' capabilities. This focus on quantitative error metrics tends to ignore the more important behavioral aspect of the models, raising the question of whether these models really predict human-like behavior. Thus, we propose to analyze the output of machine-learned models much like we would analyze human data in conventional behavioral research. We introduce quantitative metrics to demonstrate presence of three different behavioral phenomena in a naturalistic highway driving dataset: 1) The kinematics-dependence of who passes a merging point first 2) Lane change by an on-highway vehicle to accommodate an on-ramp vehicle 3) Lane changes by vehicles on the highway to avoid lead vehicle conflicts. Then, we analyze the behavior of three machine-learned models using the same metrics. Even though the models' RMSE value differed, all the models captured the kinematic-dependent merging behavior but struggled at varying degrees to capture the more nuanced courtesy lane change and highway lane change behavior. Additionally, the collision aversion analysis during lane changes showed that the models struggled to capture the physical aspect of human driving: leaving adequate gap between the vehicles. Thus, our analysis highlighted the inadequacy of simple quantitative metrics and the need to take a broader behavioral perspective when analyzing machine-learned models of human driving predictions.
翻译:自动驾驶车辆利用多种传感器和机器学习模型预测周围道路使用者的行为。文献中的大多数机器学习模型都专注于像均方根误差(RMSE)这样的定量误差指标来学习和报告他们的模型能力。这种对定量误差指标的关注往往忽略了模型更重要的行为方面,从而引发了这个问题:这些模型是否真的预测了类似于人类的行为?因此,我们建议分析机器学习模型的输出,就像我们会分析传统行为研究中的人类数据一样。我们引入了数量度量来证明自然公路行驶数据集中存在的三种不同的行为现象:1)谁基于运动学特征率先通过合并点 2)高速公路上的车辆变道以适应匝道车辆 3)高速公路上的车辆变道以避免前车冲突。然后,我们使用相同的度量分析了三个机器学习模型的行为。尽管模型的RMSE值不同,所有模型都捕捉到了运动学依赖性的合并行为,但在捕捉微妙的礼貌变道和高速公路变道行为方面则遇到了不同程度的困难。此外,在变道时的碰撞规避分析中,模型很难捕捉到人类驾驶的物理方面:保持足够的车距。因此,我们的分析突显了简单定量指标的不足以及在分析人类驾驶预测的机器学习模型时需要采用更广泛的行为视角。