The \emph{local boxicity} of a graph $G$, denoted by $lbox(G)$, is the minimum positive integer $l$ such that $G$ can be obtained using the intersection of $k$ (, where $k \geq l$,) interval graphs where each vertex of $G$ appears as a non-universal vertex in at most $l$ of these interval graphs. Let $G$ be a graph on $n$ vertices having $m$ edges. Let $\Delta$ denote the maximum degree of a vertex in $G$. We show that, (i) $lbox(G) \in O(\Delta)$. There exist graphs of maximum degree $\Delta$ having a local boxicity of $\Omega(\frac{\Delta}{\log\Delta})$. (ii) $lbox(G) \in O(\frac{n}{\log{n}})$. There exist graphs on $n$ vertices having a local boxicity of $\Omega(\frac{n}{\log n})$. (iii) $lbox(G) \in O(\sqrt{m})$. There exist graphs with $m$ edges having a local boxicity of $\Omega(\frac{\sqrt{m}}{\log m})$. (iv) the local boxicity of $G$ is at most its \emph{product dimension}. This connection helps us in showing that the local boxicity of the \emph{Kneser graph} $K(n,k)$ is at most $\frac{k}{2} \log{\log{n}}$. The above results can be extended to the \emph{local dimension} of a partially ordered set due to the known connection between local boxicity and local dimension. Finally, we show that the \emph{cubicity} of a graph on $n$ vertices of girth greater than $g+1$ is $O(n^{\frac{1}{\lfloor g/2\rfloor}}\log n)$.


翻译:=================================================================================================================================================================================c===========================================================================================================================================================================================================================================================================================================================================

0
下载
关闭预览

相关内容

图节点嵌入(Node Embeddings)概述,9页pdf
专知会员服务
39+阅读 · 2020年8月22日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
模式国重实验室21篇论文入选CVPR 2020
专知
30+阅读 · 2020年3月8日
Nature 一周论文导读 | 2019 年 4 月 4 日
科研圈
7+阅读 · 2019年4月14日
人工智能 | 国际会议信息6条
Call4Papers
4+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年4月8日
Arxiv
0+阅读 · 2021年4月8日
Arxiv
0+阅读 · 2021年4月7日
Arxiv
0+阅读 · 2021年4月6日
Arxiv
0+阅读 · 2021年4月6日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关VIP内容
图节点嵌入(Node Embeddings)概述,9页pdf
专知会员服务
39+阅读 · 2020年8月22日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
模式国重实验室21篇论文入选CVPR 2020
专知
30+阅读 · 2020年3月8日
Nature 一周论文导读 | 2019 年 4 月 4 日
科研圈
7+阅读 · 2019年4月14日
人工智能 | 国际会议信息6条
Call4Papers
4+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Arxiv
0+阅读 · 2021年4月8日
Arxiv
0+阅读 · 2021年4月8日
Arxiv
0+阅读 · 2021年4月7日
Arxiv
0+阅读 · 2021年4月6日
Arxiv
0+阅读 · 2021年4月6日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Top
微信扫码咨询专知VIP会员