We consider the problem of $\textit{subgroup testing}$ for a quantum circuit $C$: given access to $C$, determine whether it implements a unitary from a subgroup $\mathcal{G}$ of the unitary group. In particular, the group $\mathcal{G}$ can be the trivial subgroup (i.e., identity testing) or groups such as the Pauli or Clifford groups, or even their $q$-ary extensions. We also consider a $\textit{promise}$ version of the problem where $C$ is promised to be in some subgroup of the unitaries that contains $\mathcal{G}$ (e.g., identity testing for Clifford circuits). We present a novel structural property of Clifford unitaries. Namely, that their (normalized) trace is bounded by $1/\sqrt{2}$ in absolute value, regardless of the dimension. We show a similar property for the $q$-ary Cliffords. This allows us to analyze a very simple single-query identity test under the Clifford promise and show that it has (at least) constant soundness. The same test has perfect soundness under the Pauli promise. We use the test to show that identity/Pauli/Clifford testing (without promise) are all computationally equivalent, thus establishing computational hardness for Pauli and Clifford testing.
翻译:我们考虑的是 $\ textit{ subgroup 测试$美元对于量子电路 $C美元的问题: 给予 $C美元, 确定它是否执行一个单项, 由单一组的分组 $\ mathcal{G} 美元执行。 特别是, 这个组 $\ mathcal{G} 可以是小小分组( 身份测试), 或者像Pauli 或 Clifford 集团这样的集团, 或者甚至他们的 $ qror 扩展。 我们还考虑一个 $\ textit{ promise} 的问题版本, 问题是 $C 的版本, 其中承诺在包含 $\ mathcal{G} 美元( 例如, Cliffordard 电路的身份测试) 的分组中, 是否执行单项的单项单项硬度单项 。 我们展示了一个新的结构属性 。 因此, 在 Cliffor- C comble Exli 测试中, 将 显示一个相同的 承诺 测试 。