We introduce the integrality number of an integer program (IP) in inequality form. Roughly speaking, the integrality number is the smallest number of integer constraints needed to solve an IP via a mixed integer (MIP) relaxation. One notable property of this number is its invariance under unimodular transformations of the constraint matrix. Considering the largest minor $\Delta$ of the constraint matrix, our analysis allows us to make statements of the following form: there exist numbers $\tau(\Delta)$ and $\kappa(\Delta)$ such that an IP with $n\geq \tau(\Delta)$ many variables and $n + \kappa(\Delta)\cdot \sqrt{n}$ many inequality constraints can be solved via a MIP relaxation with fewer than $n$ integer constraints. From our results it follows that IPs defined by only $n$ constraints can be solved via a MIP relaxation with $O(\sqrt{\Delta})$ many integer constraints.
翻译:我们以不平等的形式引入一个整数程序(IP)的完整数。 粗略地说, 整数数是用混合整数( MIP) 放松解决一个 IP 所需的最小整数限制。 这个数字的一个显著属性是在约束矩阵的单单数变换下出现的差异。 考虑到限制矩阵中最大的最小的 $\ Delta$, 我们的分析允许我们以下列形式作出声明: 存在 $tau( delta) $和 $kapa (\ delta) $, 因此, 以 $\ geqq \ tau (\ Delta) 许多变量和 $ +\ kappa( Delta) 和 $ +\ kapappa( delta)\ cdott\ sqrt{n} $ 许多不平等限制可以通过最小的 MIP 松动来解决。 根据我们的结果, 仅以一美元限制定义的IP $ 的IP 可以通过多种整数限制解决 IP 。